πΉ Why BFS Matters?
Breadth-First Search (BFS) explores nodes level by level, like ripples spreading from a stone thrown in water.
- Tree case: BFS = Level-order traversal.
- Graph case: BFS = Find shortest path in unweighted graphs.
-
BFS guarantees:
- First time you visit a node = shortest path (in terms of edges).
- Works perfectly for problems involving minimum steps, spreading processes, or layered exploration.
πΉ BFS Core Idea
- Start from a source node.
- Use a queue to explore neighbors before moving deeper.
- Keep a visited set to prevent revisiting.
πΉ BFS Template in Java
import java.util.*;
public class BFSExample {
public static void bfs(int n, List<List<Integer>> graph, int start) {
boolean[] visited = new boolean[n];
Queue<Integer> queue = new LinkedList<>();
visited[start] = true;
queue.offer(start);
while (!queue.isEmpty()) {
int node = queue.poll();
System.out.print(node + " ");
for (int neighbor : graph.get(node)) {
if (!visited[neighbor]) {
visited[neighbor] = true;
queue.offer(neighbor);
}
}
}
}
public static void main(String[] args) {
int n = 5; // number of nodes
List<List<Integer>> graph = new ArrayList<>();
for (int i = 0; i < n; i++) graph.add(new ArrayList<>());
// Undirected edges
graph.get(0).add(1); graph.get(1).add(0);
graph.get(0).add(2); graph.get(2).add(0);
graph.get(1).add(3); graph.get(3).add(1);
graph.get(2).add(4); graph.get(4).add(2);
bfs(n, graph, 0); // Output: 0 1 2 3 4
}
}
πΉ BFS Use Cases (Patterns)
1. Level Order Traversal (Tree/Graph)
- Traverse level by level.
- Problem: Binary Tree Level Order Traversal (LeetCode 102).
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> result = new ArrayList<>();
if (root == null) return result;
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while (!queue.isEmpty()) {
int size = queue.size();
List<Integer> level = new ArrayList<>();
for (int i = 0; i < size; i++) {
TreeNode node = queue.poll();
level.add(node.val);
if (node.left != null) queue.offer(node.left);
if (node.right != null) queue.offer(node.right);
}
result.add(level);
}
return result;
}
2. Shortest Path in Unweighted Graph
- BFS ensures the shortest path in terms of number of edges.
- Problem: Shortest Path in Binary Matrix (LeetCode 1091), Word Ladder.
public int shortestPath(int n, List<List<Integer>> graph, int src, int dest) {
int[] dist = new int[n];
Arrays.fill(dist, -1);
Queue<Integer> queue = new LinkedList<>();
dist[src] = 0;
queue.offer(src);
while (!queue.isEmpty()) {
int node = queue.poll();
for (int neighbor : graph.get(node)) {
if (dist[neighbor] == -1) {
dist[neighbor] = dist[node] + 1;
queue.offer(neighbor);
}
}
}
return dist[dest];
}
3. Multi-source BFS (Flood Fill / Spread Problems)
- BFS starting from multiple sources simultaneously.
- Problems: Rotting Oranges (LeetCode 994), Zombie in Matrix.
public int orangesRotting(int[][] grid) {
int m = grid.length, n = grid[0].length;
Queue<int[]> queue = new LinkedList<>();
int fresh = 0, time = 0;
// Push all rotten oranges first
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (grid[i][j] == 2) queue.offer(new int[]{i, j});
if (grid[i][j] == 1) fresh++;
}
}
int[][] dirs = {{1,0},{-1,0},{0,1},{0,-1}};
while (!queue.isEmpty() && fresh > 0) {
int size = queue.size();
for (int i = 0; i < size; i++) {
int[] cell = queue.poll();
for (int[] d : dirs) {
int x = cell[0] + d[0], y = cell[1] + d[1];
if (x>=0 && x<m && y>=0 && y<n && grid[x][y]==1) {
grid[x][y] = 2;
fresh--;
queue.offer(new int[]{x, y});
}
}
}
time++;
}
return fresh == 0 ? time : -1;
}
4. BFS on Grids (Matrix as Graph)
- Treat 2D grid as graph.
- Problems: Number of Islands (variant), Maze shortest path.
πΉ BFS Interview Problem Map
- Traversal: Binary Tree Level Order, Clone Graph.
- Shortest Path (Unweighted): Word Ladder, Minimum Knight Moves, Binary Matrix Path.
- Multi-source BFS: Rotting Oranges, Fire Spread, Walls and Gates.
- Connectivity: Number of Islands, BFS Components Count.
πΉ BFS Complexity
-
Time:
O(V + E)
(Vertices + Edges). -
Space:
O(V)
for queue + visited.
β
Key Takeaway:
BFS is the Swiss Army knife for shortest paths, spreading processes, and level exploration.
It is the first go-to pattern when:
- Graph is unweighted.
- You need minimum steps.
- Problem mentions "in how many moves/steps/levels."
Top comments (0)