There are entropic functionals galore, but not simple objective measures to distinguish between them. We remedy this situation here by appeal to Born's proposal, of almost a hundred years ago, that the square modulus of any wave function | ψ | 2 be regarded as a probability distribution P. the usefulness of using information measures like Shannon's in this pure-state context has been highlighted in [Phys. Lett. A1993, 181, 446]. Here we will apply the notion with the purpose of generating a dual functional [ F α R S Q ⟶ R + ], which maps entropic functionals onto positive real numbers. In such an endeavor, we use as standard ingredients the coherent states of the harmonic oscillator (CHO), which are unique in the sense of possessing minimum uncertainty. This use is greatly facilitated by the fact that the CHO can be given analytic, compact closed form as shown in [Rev. Mex. Fis. E2019, 65, 191]. Rewarding insights are to be obtained regarding the comparison between several standard entropic measures.In Machine Learning, feature selection is an important step in classifier design. It consists of finding a subset of features that is optimum for a given cost function. One possibility to solve feature selection is to organize all possible feature subsets into a Boolean lattice and to exploit the fact that the costs of chains in that lattice describe U-shaped curves. Minimization of such cost function is known as the U-curve problem. Recently, a study proposed U-Curve Search (UCS), an optimal algorithm for that problem, which was successfully used for feature selection. However, despite of the algorithm optimality, the UCS required time in computational assays was exponential on the number of features. Here, we report that such scalability issue arises due to the fact that the U-curve problem is NP-hard. In the sequence, we introduce the Parallel U-Curve Search (PUCS), a new algorithm for the U-curve problem. In PUCS, we present a novel way to partition the search space into smaller Boolean lattices, thus rendering the algorithm highly parallelizable. We also provide computational assays with both synthetic data and Machine Learning datasets, where the PUCS performance was assessed against UCS and other golden standard algorithms in feature selection.Dempster-Shafer evidence theory (DS theory) has some superiorities in uncertain information processing for a large variety of applications. AM 095 However, the problem of how to quantify the uncertainty of basic probability assignment (BPA) in DS theory framework remain unresolved. The goal of this paper is to define a new belief entropy for measuring uncertainty of BPA with desirable properties. The new entropy can be helpful for uncertainty management in practical applications such as decision making. The proposed uncertainty measure has two components. The first component is an improved version of Dubois-Prade entropy, which aims to capture the non-specificity portion of uncertainty with a consideration of the element number in frame of discernment (FOD). The second component is adopted from Nguyen entropy, which captures conflict in BPA. We prove that the proposed entropy satisfies some desired properties proposed in the literature. In addition, the proposed entropy can be reduced to Shannon entropy if the BPA is a probability distribution. Numerical examples are presented to show the efficiency and superiority of the proposed measure as well as an application in decision making.In this paper, we consider limit probability distributions of the quantum walk recently introduced by Wang and Ye (C.S. Wang and X.J. Ye, Quantum walk in terms of quantum Bernoulli noises, Quantum Inf. Process. 15 (2016), no. 5, 1897-1908). We first establish several technical theorems, which themselves are also interesting. Then, by using these theorems, we prove that, for a wide range of choices of the initial state, the above-mentioned quantum walk has a limit probability distribution of standard Gauss type, which actually gives a new limit theorem for the walk.Evolutionary game theory in the realm of network science appeals to a lot of research communities, as it constitutes a popular theoretical framework for studying the evolution of cooperation in social dilemmas. Recent research has shown that cooperation is markedly more resistant in interdependent networks, where traditional network reciprocity can be further enhanced due to various forms of interdependence between different network layers. However, the role of mobility in interdependent networks is yet to gain its well-deserved attention. Here we consider an interdependent network model, where individuals in each layer follow different evolutionary games, and where each player is considered as a mobile agent that can move locally inside its own layer to improve its fitness. Probabilistically, we also consider an imitation possibility from a neighbor on the other layer. We show that, by considering migration and stochastic imitation, further fascinating gateways to cooperation on interdependent networks can be observed. Notably, cooperation can be promoted on both layers, even if cooperation without interdependence would be improbable on one of the layers due to adverse conditions. Our results provide a rationale for engineering better social systems at the interface of networks and human decision making under testing dilemmas.In this paper, a new Computer-Aided Detection (CAD) system for the detection and classification of dangerous skin lesions (melanoma type) is presented, through a fusion of handcraft features related to the medical algorithm ABCD rule (Asymmetry Borders-Colors-Dermatoscopic Structures) and deep learning features employing Mutual Information (MI) measurements. The steps of a CAD system can be summarized as preprocessing, feature extraction, feature fusion, and classification. During the preprocessing step, a lesion image is enhanced, filtered, and segmented, with the aim to obtain the Region of Interest (ROI); in the next step, the feature extraction is performed. Handcraft features such as shape, color, and texture are used as the representation of the ABCD rule, and deep learning features are extracted using a Convolutional Neural Network (CNN) architecture, which is pre-trained on Imagenet (an ILSVRC Imagenet task). MI measurement is used as a fusion rule, gathering the most important information from both types of features.AM 095
For further actions, you may consider blocking this person and/or reporting abuse
Top comments (0)