DEV Community

Braimah Fadilat
Braimah Fadilat

Posted on

1

A First Glance Review on Retail Sales Data

Introduction
The dataset under review is a retail sales data sample, containing information on sales transactions, including variables such as product codes, customer information, order quantities, sales, and dates. As a data analysis intern, I'm always on the lookout for fresh insights and trends, and this dataset is packed with goodies. In this "First Glance" report, I'll be sharing my initial observations and findings from a quick spin through the data.let's get started!

Observations
I did a quick review of this dataset using power query editor in power BI and Power BI desktop for the quick summary using line visuals.
This dataset contained 2823 rows and 25 columns, which are grouped into whole numbers datatypes, decimal datatypes, and text datatypes.
The columns are:
Order number, quantity ordered, price each, orderline number, Sales, order dates, status, QTR_ID, Month_ID, Year_ID, product line, MSRP, product code, customer name, phone, addressline1, addressline 2, State, postal code, country, territory, contact last name, contactfirst name, dealsize.

Anomalies
Image description
Three columns contains rows with empty cells. AddressLine 2 contained 89% empty rows, State column contained 51% empty rows and postalcode postal code contained 4% empty rows.

Trends/Insights

  1. Sales distribution by country shows the USA is making more revenue compared to other countries.
    Image description

  2. The highest revenue was generated in November. It was a flowing trend until November, when it attained its peak.
    Image description

  3. The sales trend by productLine shows classic cars as the highest revenue-generating product.
    Image description

Conclusion
This review of the retail dataset reveals insights into top-selling products, country sales trends, and monthly sales trends. Further analysis could explore the top 10 and bottom 10 selling products, regional market analysis, and customer segmentation. To learn more about data analysis and internship opportunities, visit HNG Internships {https://hng.tech/internship} or Check out HNG Premium{https://hng.tech/premium}

πŸ‘‹ While you are here

Reinvent your career. Join DEV.

It takes one minute and is worth it for your career.

Get started

Top comments (0)

A Workflow Copilot. Tailored to You.

Pieces.app image

Our desktop app, with its intelligent copilot, streamlines coding by generating snippets, extracting code from screenshots, and accelerating problem-solving.

Read the docs

πŸ‘‹ Kindness is contagious

Dive into an ocean of knowledge with this thought-provoking post, revered deeply within the supportive DEV Community. Developers of all levels are welcome to join and enhance our collective intelligence.

Saying a simple "thank you" can brighten someone's day. Share your gratitude in the comments below!

On DEV, sharing ideas eases our path and fortifies our community connections. Found this helpful? Sending a quick thanks to the author can be profoundly valued.

Okay