1.3 技术分析基础
学习目标
- 掌握技术分析的基本原理和假设
- 理解趋势、支撑阻力等核心概念
- 熟悉常用技术指标的计算和应用
- 学会多时间框架分析方法
1.3.1 技术分析基本原理
技术分析的三大假设
1. 市场行为包含一切信息
def market_efficiency_principle():
"""
市场行为包含一切信息的含义
"""
principle = {
'基本面因素': '财务数据、经济指标等已反映在价格中',
'技术面因素': '供需关系、市场情绪等已反映在价格中',
'政策因素': '监管政策、政府态度等已反映在价格中',
'心理因素': '市场参与者的情绪和预期已反映在价格中'
}
implication = """
因此:只需要分析价格和成交量数据,
就能做出有效的投资决策
"""
return principle, implication
2. 价格沿趋势运动
- 趋势惯性: 一旦形成趋势,往往会持续一段时间
- 趋势转换: 趋势改变需要明确的信号确认
- 多级趋势: 同时存在主要趋势、次要趋势和短期波动
3. 历史会重演
def historical_pattern_repetition():
"""
历史重演的逻辑基础
"""
logic = {
'人性不变': '贪婪、恐惧等情绪是人类共性',
'集体行为': '群体心理具有相似的表现模式',
'市场结构': '供需关系的基本模式相对稳定',
'技术模式': '相似的市场条件产生相似的价格模式'
}
application = """
应用:通过识别历史模式,
预测未来可能的价格运动
"""
return logic, application
1.3.2 趋势分析
趋势的定义和分类
1. 按方向分类
import pandas as pd
import numpy as np
def identify_trend_direction(prices, window=20):
"""
识别趋势方向
"""
# 计算移动平均线
ma = prices.rolling(window).mean()
# 趋势判断逻辑
current_price = prices.iloc[-1]
ma_current = ma.iloc[-1]
ma_previous = ma.iloc[-window]
if current_price > ma_current and ma_current > ma_previous:
return "上升趋势 (Uptrend)"
elif current_price < ma_current and ma_current < ma_previous:
return "下降趋势 (Downtrend)"
else:
return "横盘整理 (Sideways)"
def trend_characteristics():
"""
不同趋势的特征
"""
trends = {
'上升趋势': {
'price_action': '高点和低点逐步抬高',
'volume': '上涨时放量,下跌时缩量',
'ma_alignment': '短期均线在长期均线上方',
'psychology': '乐观情绪主导'
},
'下降趋势': {
'price_action': '高点和低点逐步降低',
'volume': '下跌时放量,反弹时缩量',
'ma_alignment': '短期均线在长期均线下方',
'psychology': '悲观情绪主导'
},
'横盘趋势': {
'price_action': '在一定区间内震荡',
'volume': '成交量相对较低',
'ma_alignment': '均线纠缠,方向不明',
'psychology': '犹豫观望情绪'
}
}
return trends
2. 按时间周期分类
def trend_time_classification():
"""
按时间周期划分趋势
"""
trend_periods = {
'主要趋势 (Primary Trend)': {
'duration': '1年以上',
'description': '长期牛市或熊市',
'importance': '最重要,决定投资方向'
},
'次要趋势 (Secondary Trend)': {
'duration': '3周-3个月',
'description': '主趋势中的回调或反弹',
'importance': '重要,提供交易机会'
},
'短期波动 (Minor Trend)': {
'duration': '数天到3周',
'description': '日常价格波动',
'importance': '对短线交易有意义'
}
}
return trend_periods
趋势线绘制
1. 上升趋势线
def draw_uptrend_line(prices, dates):
"""
绘制上升趋势线
"""
# 寻找连续低点
lows = []
for i in range(1, len(prices)-1):
if prices[i] < prices[i-1] and prices[i] < prices[i+1]:
lows.append((dates[i], prices[i]))
# 连接两个或多个低点形成上升趋势线
if len(lows) >= 2:
trend_line = {
'points': lows,
'slope': (lows[-1][1] - lows[0][1]) / (lows[-1][0] - lows[0][0]),
'support_level': '趋势线作为动态支撑',
'validity': '触及次数越多越有效'
}
return trend_line
2. 下降趋势线
def draw_downtrend_line(prices, dates):
"""
绘制下降趋势线
"""
# 寻找连续高点
highs = []
for i in range(1, len(prices)-1):
if prices[i] > prices[i-1] and prices[i] > prices[i+1]:
highs.append((dates[i], prices[i]))
# 连接两个或多个高点形成下降趋势线
if len(highs) >= 2:
trend_line = {
'points': highs,
'slope': (highs[-1][1] - highs[0][1]) / (highs[-1][0] - highs[0][0]),
'resistance_level': '趋势线作为动态阻力',
'break_signal': '有效突破预示趋势反转'
}
return trend_line
1.3.3 支撑与阻力
支撑阻力的形成机制
def support_resistance_psychology():
"""
支撑阻力的心理学基础
"""
psychology = {
'支撑位心理': {
'买方集中': '历史低点附近买方密集',
'止损聚集': '空头止损单集中在支撑位',
'价值认同': '市场认为该价位具有投资价值',
'技术信仰': '技术分析者在此设置买点'
},
'阻力位心理': {
'卖方集中': '历史高点附近卖方密集',
'获利了结': '多头在此价位获利出局',
'套牢盘': '早期套牢者等待解套',
'心理关口': '整数价位具有心理意义'
}
}
return psychology
支撑阻力的类型
1. 水平支撑阻力
def horizontal_support_resistance(prices, window=20, min_touches=2):
"""
识别水平支撑阻力位
"""
# 找出局部高点和低点
highs = []
lows = []
for i in range(window, len(prices) - window):
# 局部高点
if all(prices[i] >= prices[i-j] for j in range(1, window+1)) and \
all(prices[i] >= prices[i+j] for j in range(1, window+1)):
highs.append(prices[i])
# 局部低点
if all(prices[i] <= prices[i-j] for j in range(1, window+1)) and \
all(prices[i] <= prices[i+j] for j in range(1, window+1)):
lows.append(prices[i])
# 聚类相近的价位
def cluster_prices(price_list, tolerance=0.02):
clusters = []
for price in sorted(price_list):
placed = False
for cluster in clusters:
if abs(price - cluster['center']) / cluster['center'] <= tolerance:
cluster['prices'].append(price)
cluster['center'] = np.mean(cluster['prices'])
cluster['touches'] += 1
placed = True
break
if not placed:
clusters.append({
'center': price,
'prices': [price],
'touches': 1
})
# 过滤掉触及次数少的价位
significant_levels = [cluster for cluster in clusters
if cluster['touches'] >= min_touches]
return significant_levels
resistance_levels = cluster_prices(highs)
support_levels = cluster_prices(lows)
return {
'resistance': resistance_levels,
'support': support_levels
}
2. 动态支撑阻力
def dynamic_support_resistance(prices, ma_periods=[20, 50, 200]):
"""
基于移动平均线的动态支撑阻力
"""
dynamic_levels = {}
for period in ma_periods:
ma = prices.rolling(period).mean()
# 判断MA的支撑阻力作用
current_price = prices.iloc[-1]
ma_current = ma.iloc[-1]
if current_price > ma_current:
role = f"MA{period}作为动态支撑"
else:
role = f"MA{period}作为动态阻力"
dynamic_levels[f'MA{period}'] = {
'value': ma_current,
'role': role,
'strength': '周期越长,支撑阻力越强'
}
return dynamic_levels
支撑阻力的强度判断
def support_resistance_strength(level_data):
"""
判断支撑阻力的强度
"""
strength_factors = {
'触及次数': {
'weight': 0.3,
'calculation': 'touches / max_touches',
'interpretation': '触及次数越多越强'
},
'成交量': {
'weight': 0.25,
'calculation': 'avg_volume_at_level / avg_volume',
'interpretation': '该价位成交量越大越强'
},
'时间跨度': {
'weight': 0.2,
'calculation': 'time_span / total_period',
'interpretation': '形成时间越长越强'
},
'距离现价': {
'weight': 0.15,
'calculation': '1 / abs(level - current_price)',
'interpretation': '距离现价越近影响越大'
},
'突破历史': {
'weight': 0.1,
'calculation': 'false_breakouts / total_tests',
'interpretation': '假突破越多越强'
}
}
# 计算综合强度分数
total_score = 0
for factor, config in strength_factors.items():
factor_score = config['calculation'] # 这里应该是实际计算
weighted_score = factor_score * config['weight']
total_score += weighted_score
return {
'strength_score': total_score,
'level': 'Strong' if total_score > 0.7 else 'Medium' if total_score > 0.4 else 'Weak'
}
1.3.4 常用技术指标
趋势跟踪指标
1. 移动平均线 (Moving Average)
def moving_averages(prices, periods=[5, 10, 20, 50, 200]):
"""
计算不同周期的移动平均线
"""
mas = {}
for period in periods:
# 简单移动平均 (SMA)
sma = prices.rolling(period).mean()
# 指数移动平均 (EMA)
ema = prices.ewm(span=period).mean()
mas[f'SMA{period}'] = sma
mas[f'EMA{period}'] = ema
return mas
def ma_trading_signals(prices, short_period=20, long_period=50):
"""
基于移动平均线的交易信号
"""
short_ma = prices.rolling(short_period).mean()
long_ma = prices.rolling(long_period).mean()
# 金叉死叉信号
golden_cross = (short_ma > long_ma) & (short_ma.shift(1) <= long_ma.shift(1))
death_cross = (short_ma < long_ma) & (short_ma.shift(1) >= long_ma.shift(1))
signals = pd.Series(0, index=prices.index)
signals[golden_cross] = 1 # 买入信号
signals[death_cross] = -1 # 卖出信号
return {
'signals': signals,
'short_ma': short_ma,
'long_ma': long_ma,
'interpretation': {
'golden_cross': '短期均线上穿长期均线,看涨信号',
'death_cross': '短期均线下穿长期均线,看跌信号'
}
}
2. MACD指标
def calculate_macd(prices, fast=12, slow=26, signal=9):
"""
计算MACD指标
"""
# 计算快速和慢速EMA
ema_fast = prices.ewm(span=fast).mean()
ema_slow = prices.ewm(span=slow).mean()
# MACD线 = 快速EMA - 慢速EMA
macd_line = ema_fast - ema_slow
# 信号线 = MACD线的EMA
signal_line = macd_line.ewm(span=signal).mean()
# 柱状图 = MACD线 - 信号线
histogram = macd_line - signal_line
return {
'macd': macd_line,
'signal': signal_line,
'histogram': histogram,
'interpretation': {
'macd_above_signal': '看涨信号',
'macd_below_signal': '看跌信号',
'histogram_increasing': '动能增强',
'histogram_decreasing': '动能减弱'
}
}
def macd_trading_signals(macd_data):
"""
基于MACD的交易信号
"""
macd = macd_data['macd']
signal = macd_data['signal']
histogram = macd_data['histogram']
# MACD金叉死叉
bullish_crossover = (macd > signal) & (macd.shift(1) <= signal.shift(1))
bearish_crossover = (macd < signal) & (macd.shift(1) >= signal.shift(1))
# 零轴交叉
zero_line_cross_up = (macd > 0) & (macd.shift(1) <= 0)
zero_line_cross_down = (macd < 0) & (macd.shift(1) >= 0)
# 柱状图信号
histogram_turning_positive = (histogram > histogram.shift(1)) & (histogram.shift(1) < histogram.shift(2))
histogram_turning_negative = (histogram < histogram.shift(1)) & (histogram.shift(1) > histogram.shift(2))
return {
'bullish_crossover': bullish_crossover,
'bearish_crossover': bearish_crossover,
'zero_cross_up': zero_line_cross_up,
'zero_cross_down': zero_line_cross_down,
'momentum_up': histogram_turning_positive,
'momentum_down': histogram_turning_negative
}
震荡指标
1. RSI相对强弱指标
def calculate_rsi(prices, period=14):
"""
计算RSI指标
"""
# 计算价格变化
delta = prices.diff()
# 分离上涨和下跌
gain = delta.where(delta > 0, 0)
loss = -delta.where(delta < 0, 0)
# 计算平均涨跌幅
avg_gain = gain.rolling(period).mean()
avg_loss = loss.rolling(period).mean()
# 计算相对强度
rs = avg_gain / avg_loss
# 计算RSI
rsi = 100 - (100 / (1 + rs))
return {
'rsi': rsi,
'interpretation': {
'overbought': 'RSI > 70,超买区域',
'oversold': 'RSI < 30,超卖区域',
'neutral': '30 <= RSI <= 70,中性区域'
}
}
def rsi_trading_signals(rsi, overbought=70, oversold=30):
"""
基于RSI的交易信号
"""
# 超买超卖信号
overbought_condition = rsi > overbought
oversold_condition = rsi < oversold
# 背离信号需要结合价格分析
def detect_divergence(prices, rsi):
# 这里简化处理,实际需要更复杂的算法
price_highs = prices.rolling(20).max()
rsi_highs = rsi.rolling(20).max()
bearish_divergence = (prices == price_highs) & (rsi < rsi_highs)
bullish_divergence = (prices == prices.rolling(20).min()) & (rsi > rsi.rolling(20).min())
return bearish_divergence, bullish_divergence
return {
'overbought': overbought_condition,
'oversold': oversold_condition,
'signal_strength': 'RSI极值信号强度取决于市场环境'
}
2. 布林带指标
def calculate_bollinger_bands(prices, period=20, std_dev=2):
"""
计算布林带指标
"""
# 计算中轨(移动平均线)
middle_band = prices.rolling(period).mean()
# 计算标准差
std = prices.rolling(period).std()
# 计算上下轨
upper_band = middle_band + (std * std_dev)
lower_band = middle_band - (std * std_dev)
# 计算带宽和位置
band_width = (upper_band - lower_band) / middle_band
position = (prices - lower_band) / (upper_band - lower_band)
return {
'upper': upper_band,
'middle': middle_band,
'lower': lower_band,
'width': band_width,
'position': position,
'interpretation': {
'squeeze': '带宽收窄预示波动率将增加',
'expansion': '带宽扩张显示波动率增加',
'upper_touch': '触及上轨可能回调',
'lower_touch': '触及下轨可能反弹'
}
}
def bollinger_band_signals(bb_data, prices):
"""
基于布林带的交易信号
"""
upper = bb_data['upper']
lower = bb_data['lower']
middle = bb_data['middle']
width = bb_data['width']
# 布林带突破信号
upper_breakout = prices > upper
lower_breakout = prices < lower
# 回归信号
mean_reversion_up = (prices < lower) & (prices.shift(1) >= lower.shift(1))
mean_reversion_down = (prices > upper) & (prices.shift(1) <= upper.shift(1))
# 带宽收缩信号(波动率压缩)
squeeze = width < width.rolling(20).quantile(0.1)
return {
'breakout_up': upper_breakout,
'breakout_down': lower_breakout,
'reversion_up': mean_reversion_up,
'reversion_down': mean_reversion_down,
'squeeze': squeeze
}
成交量指标
1. 成交量加权平均价 (VWAP)
def calculate_vwap(prices, volumes, period=20):
"""
计算成交量加权平均价
"""
# 计算典型价格
typical_price = (prices['high'] + prices['low'] + prices['close']) / 3
# 计算成交量加权价格
vwap = (typical_price * volumes).rolling(period).sum() / volumes.rolling(period).sum()
return {
'vwap': vwap,
'interpretation': {
'above_vwap': '价格在VWAP上方,买方力量强',
'below_vwap': '价格在VWAP下方,卖方力量强',
'vwap_slope': 'VWAP斜率反映趋势强度'
}
}
2. 能量潮指标 (OBV)
def calculate_obv(prices, volumes):
"""
计算能量潮指标
"""
# 价格变化方向
price_change = prices.diff()
# OBV计算逻辑
obv = pd.Series(0.0, index=prices.index)
for i in range(1, len(prices)):
if price_change.iloc[i] > 0:
obv.iloc[i] = obv.iloc[i-1] + volumes.iloc[i]
elif price_change.iloc[i] < 0:
obv.iloc[i] = obv.iloc[i-1] - volumes.iloc[i]
else:
obv.iloc[i] = obv.iloc[i-1]
return {
'obv': obv,
'interpretation': {
'rising_obv': 'OBV上升确认价格上涨趋势',
'falling_obv': 'OBV下降确认价格下跌趋势',
'divergence': 'OBV与价格背离预示趋势可能反转'
}
}
1.3.5 多时间框架分析
多时间框架的重要性
def multi_timeframe_strategy():
"""
多时间框架分析策略
"""
framework = {
'长期时间框架 (日线/周线)': {
'purpose': '确定主要趋势方向',
'indicators': ['MA200', '周线支撑阻力', '长期RSI'],
'decision': '决定做多还是做空'
},
'中期时间框架 (4小时/1小时)': {
'purpose': '寻找入场时机',
'indicators': ['MACD', '中期支撑阻力', 'RSI背离'],
'decision': '确定具体入场点位'
},
'短期时间框架 (15分钟/5分钟)': {
'purpose': '精确执行入场',
'indicators': ['短期MA', '布林带', '成交量'],
'decision': '优化入场时机和价格'
}
}
workflow = """
分析流程:
1. 长期看趋势:判断大方向
2. 中期找机会:确定入场区域
3. 短期抓时机:精确执行交易
4. 风险控制:各时间框架协调一致
"""
return framework, workflow
时间框架协调性分析
def timeframe_alignment_analysis(data_dict):
"""
分析不同时间框架的协调性
"""
# data_dict包含不同时间框架的数据
# {'1d': daily_data, '4h': hourly_data, '15m': minute_data}
alignment_score = {}
for timeframe, data in data_dict.items():
# 计算各时间框架的信号
ma_signal = 1 if data['close'].iloc[-1] > data['ma20'].iloc[-1] else -1
rsi_signal = 1 if data['rsi'].iloc[-1] < 70 else -1 if data['rsi'].iloc[-1] > 30 else 0
macd_signal = 1 if data['macd'].iloc[-1] > data['signal'].iloc[-1] else -1
alignment_score[timeframe] = {
'ma_signal': ma_signal,
'rsi_signal': rsi_signal,
'macd_signal': macd_signal,
'total_score': ma_signal + rsi_signal + macd_signal
}
# 计算整体协调性
total_alignment = sum(score['total_score'] for score in alignment_score.values())
decision = {
'strong_buy': total_alignment >= 6,
'buy': 3 <= total_alignment < 6,
'neutral': -3 < total_alignment < 3,
'sell': -6 < total_alignment <= -3,
'strong_sell': total_alignment <= -6
}
return alignment_score, decision
1.3.6 技术形态分析
经典反转形态
1. 头肩顶/头肩底
def detect_head_shoulders(prices, window=20):
"""
检测头肩形态
"""
# 寻找三个连续的高点(头肩顶)或低点(头肩底)
peaks = []
troughs = []
for i in range(window, len(prices) - window):
# 检测峰值
if all(prices[i] >= prices[i-j] for j in range(1, window+1)) and \
all(prices[i] >= prices[i+j] for j in range(1, window+1)):
peaks.append((i, prices[i]))
# 检测谷值
if all(prices[i] <= prices[i-j] for j in range(1, window+1)) and \
all(prices[i] <= prices[i+j] for j in range(1, window+1)):
troughs.append((i, prices[i]))
# 头肩顶模式识别
def identify_head_shoulders_top(peaks):
if len(peaks) >= 3:
for i in range(len(peaks) - 2):
left_shoulder = peaks[i][1]
head = peaks[i+1][1]
right_shoulder = peaks[i+2][1]
# 头部高于两肩,两肩高度相近
if (head > left_shoulder and head > right_shoulder and
abs(left_shoulder - right_shoulder) / left_shoulder < 0.05):
return {
'pattern': 'Head and Shoulders Top',
'left_shoulder': left_shoulder,
'head': head,
'right_shoulder': right_shoulder,
'signal': 'Bearish Reversal'
}
return None
# 头肩底模式识别
def identify_head_shoulders_bottom(troughs):
if len(troughs) >= 3:
for i in range(len(troughs) - 2):
left_shoulder = troughs[i][1]
head = troughs[i+1][1]
right_shoulder = troughs[i+2][1]
# 头部低于两肩,两肩高度相近
if (head < left_shoulder and head < right_shoulder and
abs(left_shoulder - right_shoulder) / left_shoulder < 0.05):
return {
'pattern': 'Head and Shoulders Bottom',
'left_shoulder': left_shoulder,
'head': head,
'right_shoulder': right_shoulder,
'signal': 'Bullish Reversal'
}
return None
top_pattern = identify_head_shoulders_top(peaks)
bottom_pattern = identify_head_shoulders_bottom(troughs)
return {
'head_shoulders_top': top_pattern,
'head_shoulders_bottom': bottom_pattern
}
2. 双顶/双底
def detect_double_top_bottom(prices, window=15, tolerance=0.02):
"""
检测双顶双底形态
"""
peaks = []
troughs = []
# 寻找峰值和谷值
for i in range(window, len(prices) - window):
if all(prices[i] >= prices[i-j] for j in range(1, window+1)) and \
all(prices[i] >= prices[i+j] for j in range(1, window+1)):
peaks.append((i, prices[i]))
if all(prices[i] <= prices[i-j] for j in range(1, window+1)) and \
all(prices[i] <= prices[i+j] for j in range(1, window+1)):
troughs.append((i, prices[i]))
# 双顶识别
def identify_double_top(peaks):
for i in range(len(peaks) - 1):
peak1 = peaks[i][1]
peak2 = peaks[i+1][1]
# 两个峰值高度相近
if abs(peak1 - peak2) / peak1 <= tolerance:
return {
'pattern': 'Double Top',
'peak1': peak1,
'peak2': peak2,
'signal': 'Bearish Reversal',
'target': min(peak1, peak2) - abs(peak1 - peak2)
}
return None
# 双底识别
def identify_double_bottom(troughs):
for i in range(len(troughs) - 1):
trough1 = troughs[i][1]
trough2 = troughs[i+1][1]
# 两个谷值高度相近
if abs(trough1 - trough2) / trough1 <= tolerance:
return {
'pattern': 'Double Bottom',
'trough1': trough1,
'trough2': trough2,
'signal': 'Bullish Reversal',
'target': max(trough1, trough2) + abs(trough1 - trough2)
}
return None
double_top = identify_double_top(peaks)
double_bottom = identify_double_bottom(troughs)
return {
'double_top': double_top,
'double_bottom': double_bottom
}
持续形态
1. 三角形整理
def detect_triangle_patterns(prices, min_points=4):
"""
检测三角形整理形态
"""
highs = []
lows = []
# 收集高点和低点
window = 10
for i in range(window, len(prices) - window):
if all(prices[i] >= prices[i-j] for j in range(1, window+1)) and \
all(prices[i] >= prices[i+j] for j in range(1, window+1)):
highs.append((i, prices[i]))
if all(prices[i] <= prices[i-j] for j in range(1, window+1)) and \
all(prices[i] <= prices[i+j] for j in range(1, window+1)):
lows.append((i, prices[i]))
if len(highs) >= min_points // 2 and len(lows) >= min_points // 2:
# 计算高点和低点的趋势线斜率
highs_slope = (highs[-1][1] - highs[0][1]) / (highs[-1][0] - highs[0][0])
lows_slope = (lows[-1][1] - lows[0][1]) / (lows[-1][0] - lows[0][0])
# 判断三角形类型
if highs_slope < 0 and lows_slope > 0:
pattern_type = "Symmetrical Triangle"
signal = "Continuation pattern, breakout direction uncertain"
elif highs_slope < 0 and abs(lows_slope) < 0.001:
pattern_type = "Descending Triangle"
signal = "Bearish pattern, expect downward breakout"
elif abs(highs_slope) < 0.001 and lows_slope > 0:
pattern_type = "Ascending Triangle"
signal = "Bullish pattern, expect upward breakout"
else:
pattern_type = "Unknown Triangle"
signal = "Pattern unclear"
return {
'pattern': pattern_type,
'signal': signal,
'resistance_slope': highs_slope,
'support_slope': lows_slope,
'breakout_target': abs(highs[0][1] - lows[0][1])
}
return None
本节总结
技术分析是量化交易策略开发的重要基础。通过系统学习趋势分析、支撑阻力、技术指标和形态识别,可以为策略开发提供丰富的信号来源。
关键要点:
- 技术分析基于市场行为包含一切信息的假设
- 趋势识别和支撑阻力分析是技术分析的核心
- 技术指标提供量化的买卖信号,但需要结合市场环境使用
- 多时间框架分析能够提高交易决策的准确性
- 技术形态为中长期价格预测提供参考
实践练习
练习1.3.1: 指标编程实现
# 实现以下技术指标
def practice_indicators(prices, volumes):
"""
编程实现各种技术指标
"""
# 1. 实现威廉指标(%R)
# 2. 实现KDJ指标
# 3. 实现ATR平均真实范围
# 4. 实现CCI商品通道指标
pass
练习1.3.2: 多时间框架信号系统
def multi_timeframe_signals(daily_data, hourly_data, minute_data):
"""
构建多时间框架信号系统
"""
# 1. 分析各时间框架趋势
# 2. 计算信号强度
# 3. 给出综合交易建议
pass
练习1.3.3: 形态识别算法
def pattern_recognition_system(prices):
"""
开发自动形态识别系统
"""
# 1. 识别更多经典形态
# 2. 计算形态可靠性
# 3. 给出目标价位预测
pass
思考题
- 为什么技术指标在不同市场环境下的效果会有差异?
- 如何避免技术分析中的主观偏见?
- 多时间框架分析中,如何平衡不同时间框架信号的权重?
- 技术形态的有效性如何量化评估?
下一节:模块2 - Freqtrade平台入门
Top comments (0)