DEV Community

Henry Lin
Henry Lin

Posted on

Chapter 1: Quantitative Investment Basics/第1章:量化投资基础

第1章:量化投资基础 / Chapter 1: Quantitative Investment Basics

学习目标 / Learning Objectives

通过本章学习,您将了解:
Through this chapter, you will learn:

  • 量化投资的基本概念和特点 / Basic concepts and characteristics of quantitative investment
  • 量化投资与传统投资的区别 / Differences between quantitative and traditional investment
  • 量化投资的发展历程和现状 / Development history and current status of quantitative investment
  • 量化投资的基本流程 / Basic workflow of quantitative investment
  • 常用的评价指标和风险管理方法 / Common evaluation metrics and risk management methods

1.1 量化投资概述 / Overview of Quantitative Investment

1.1.1 什么是量化投资 / What is Quantitative Investment

量化投资是一种利用数学模型、统计学方法和计算机技术来分析金融市场、制定投资策略的投资方法。它通过大量历史数据的分析,寻找市场规律,并用数量化的方式表达投资思想。

Quantitative investment is an investment approach that uses mathematical models, statistical methods, and computer technology to analyze financial markets and formulate investment strategies. It seeks market patterns through analysis of large amounts of historical data and expresses investment ideas in a quantitative manner.

1.1.2 量化投资的核心特点 / Core Characteristics of Quantitative Investment

1. 数据驱动 / Data-Driven

量化投资依赖大量的历史和实时数据进行决策,包括价格数据、基本面数据、新闻数据等。

Quantitative investment relies on large amounts of historical and real-time data for decision-making, including price data, fundamental data, news data, etc.

2. 模型化 / Model-Based

通过建立数学模型来描述市场行为和投资逻辑,使投资决策过程可量化、可重复。

Mathematical models are built to describe market behavior and investment logic, making the investment decision process quantifiable and repeatable.

3. 系统化 / Systematic

投资流程标准化,减少人为情绪和主观判断的影响,提高决策的一致性。

The investment process is standardized, reducing the influence of human emotions and subjective judgments, and improving decision consistency.

4. 风险控制 / Risk Control

通过定量方法精确测量和控制风险,实现风险与收益的平衡。

Risk is precisely measured and controlled through quantitative methods to achieve a balance between risk and return.

1.1.3 传统投资 vs 量化投资 / Traditional Investment vs Quantitative Investment

特征 / Feature 传统投资 / Traditional 量化投资 / Quantitative
决策依据 / Decision Basis 主观判断、经验 / Subjective judgment, experience 数据、模型 / Data, models
分析方法 / Analysis Method 基本面、技术面分析 / Fundamental, technical analysis 统计学、机器学习 / Statistics, machine learning
执行方式 / Execution 人工执行 / Manual execution 自动化执行 / Automated execution
处理能力 / Processing Capacity 有限标的 / Limited targets 大规模标的 / Large-scale targets
一致性 / Consistency 受情绪影响 / Affected by emotions 保持一致性 / Maintain consistency

1.2 量化投资的发展历程 / Development History of Quantitative Investment

1.2.1 早期发展(1970s-1980s)/ Early Development (1970s-1980s)

  • 现代投资组合理论:Harry Markowitz提出的均值-方差模型奠定了量化投资的理论基础
  • Modern Portfolio Theory: Harry Markowitz's mean-variance model laid the theoretical foundation for quantitative investment

  • CAPM模型:William Sharpe等人发展的资本资产定价模型

  • CAPM Model: Capital Asset Pricing Model developed by William Sharpe and others

1.2.2 快速发展(1990s-2000s)/ Rapid Development (1990s-2000s)

  • 计算机技术普及:使大规模数据处理成为可能
  • Computer Technology Adoption: Made large-scale data processing possible

  • 衍生品市场发展:为量化策略提供了更多工具

  • Derivatives Market Development: Provided more tools for quantitative strategies

1.2.3 现代量化投资(2010s-至今)/ Modern Quantitative Investment (2010s-Present)

  • 大数据时代:海量数据的获取和处理能力大幅提升
  • Big Data Era: Significant improvement in the ability to acquire and process massive data

  • 人工智能应用:机器学习、深度学习在投资中的广泛应用

  • AI Application: Widespread application of machine learning and deep learning in investment

  • 高频交易:毫秒级的交易执行和策略优化

  • High-Frequency Trading: Millisecond-level trade execution and strategy optimization

1.3 量化投资流程 / Quantitative Investment Process

1.3.1 数据获取与处理 / Data Acquisition and Processing

# 数据获取示例 / Data acquisition example
import pandas as pd
import numpy as np

# Load stock price data / 加载股票价格数据
def load_stock_data(symbol, start_date, end_date):
    """
    Load stock data for analysis
    加载用于分析的股票数据

    Parameters:
    - symbol: Stock symbol / 股票代码
    - start_date: Start date / 开始日期  
    - end_date: End date / 结束日期
    """
    # This is a placeholder - in practice, you would load from data provider
    # 这是一个占位符 - 实际中你会从数据提供商加载数据
    pass

# Data cleaning and preprocessing / 数据清洗和预处理
def clean_data(raw_data):
    """
    Clean and preprocess raw market data
    清洗和预处理原始市场数据
    """
    # Remove missing values / 移除缺失值
    cleaned_data = raw_data.dropna()

    # Handle outliers / 处理异常值
    # Implementation details would go here
    # 具体实现细节在这里

    return cleaned_data
Enter fullscreen mode Exit fullscreen mode

1.3.2 因子挖掘与特征工程 / Factor Mining and Feature Engineering

因子是驱动股票收益的关键变量。常见因子包括:
Factors are key variables that drive stock returns. Common factors include:

  • 价格因子 / Price Factors: 动量、反转等 / Momentum, reversal, etc.
  • 基本面因子 / Fundamental Factors: PE、PB、ROE等 / PE, PB, ROE, etc.
  • 技术因子 / Technical Factors: RSI、MACD等 / RSI, MACD, etc.
# Factor calculation example / 因子计算示例
def calculate_momentum_factor(price_data, window=20):
    """
    Calculate momentum factor
    计算动量因子

    Parameters:
    - price_data: Price time series / 价格时间序列
    - window: Lookback window / 回望窗口
    """
    momentum = price_data.pct_change(window)
    return momentum

def calculate_moving_average_factor(price_data, short_window=5, long_window=20):
    """
    Calculate moving average factor
    计算移动平均因子
    """
    short_ma = price_data.rolling(window=short_window).mean()
    long_ma = price_data.rolling(window=long_window).mean()
    ma_ratio = short_ma / long_ma - 1
    return ma_ratio
Enter fullscreen mode Exit fullscreen mode

1.3.3 模型构建与验证 / Model Construction and Validation

# Model building example / 模型构建示例
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split, cross_val_score

def build_prediction_model(features, target):
    """
    Build predictive model for stock returns
    构建股票收益预测模型

    Parameters:
    - features: Factor data / 因子数据
    - target: Target returns / 目标收益
    """
    # Split data / 分割数据
    X_train, X_test, y_train, y_test = train_test_split(
        features, target, test_size=0.2, random_state=42
    )

    # Train model / 训练模型
    model = RandomForestRegressor(n_estimators=100, random_state=42)
    model.fit(X_train, y_train)

    # Cross validation / 交叉验证
    cv_scores = cross_val_score(model, X_train, y_train, cv=5)
    print(f"Cross-validation scores / 交叉验证得分: {cv_scores.mean():.4f} (+/- {cv_scores.std() * 2:.4f})")

    return model
Enter fullscreen mode Exit fullscreen mode

1.3.4 策略设计与优化 / Strategy Design and Optimization

# Strategy implementation example / 策略实施示例
class SimpleQuantStrategy:
    """
    Simple quantitative investment strategy
    简单量化投资策略
    """

    def __init__(self, model, top_k=10):
        """
        Initialize strategy
        初始化策略

        Parameters:
        - model: Trained prediction model / 训练好的预测模型
        - top_k: Number of top stocks to select / 选择的顶部股票数量
        """
        self.model = model
        self.top_k = top_k

    def generate_signals(self, features):
        """
        Generate trading signals based on model predictions
        基于模型预测生成交易信号
        """
        # Get predictions / 获取预测
        predictions = self.model.predict(features)

        # Select top k stocks / 选择前k只股票
        top_stocks = np.argsort(predictions)[-self.top_k:]

        # Generate signals (1 for buy, 0 for hold, -1 for sell)
        # 生成信号(1表示买入,0表示持有,-1表示卖出)
        signals = np.zeros(len(predictions))
        signals[top_stocks] = 1

        return signals
Enter fullscreen mode Exit fullscreen mode

1.3.5 风险管理与执行 / Risk Management and Execution

# Risk management example / 风险管理示例
def calculate_portfolio_risk(weights, returns_covariance):
    """
    Calculate portfolio risk (volatility)
    计算投资组合风险(波动率)

    Parameters:
    - weights: Portfolio weights / 投资组合权重
    - returns_covariance: Covariance matrix of returns / 收益率协方差矩阵
    """
    portfolio_variance = np.dot(weights.T, np.dot(returns_covariance, weights))
    portfolio_risk = np.sqrt(portfolio_variance)
    return portfolio_risk

def apply_risk_limits(signals, max_position_size=0.05):
    """
    Apply risk limits to trading signals
    对交易信号应用风险限制

    Parameters:
    - signals: Raw trading signals / 原始交易信号
    - max_position_size: Maximum position size per stock / 每只股票的最大仓位
    """
    # Normalize signals to respect position limits
    # 标准化信号以遵守仓位限制
    adjusted_signals = np.clip(signals, -max_position_size, max_position_size)

    # Ensure total position doesn't exceed 100%
    # 确保总仓位不超过100%
    total_position = np.sum(np.abs(adjusted_signals))
    if total_position > 1.0:
        adjusted_signals = adjusted_signals / total_position

    return adjusted_signals
Enter fullscreen mode Exit fullscreen mode

1.4 评价指标 / Evaluation Metrics

1.4.1 收益率指标 / Return Metrics

1. 总收益率 / Total Return

def calculate_total_return(initial_value, final_value):
    """
    Calculate total return
    计算总收益率
    """
    return (final_value - initial_value) / initial_value

# Example / 示例
initial_portfolio_value = 1000000  # 初始组合价值
final_portfolio_value = 1200000    # 最终组合价值
total_return = calculate_total_return(initial_portfolio_value, final_portfolio_value)
print(f"Total Return / 总收益率: {total_return:.2%}")
Enter fullscreen mode Exit fullscreen mode

2. 年化收益率 / Annualized Return

def calculate_annualized_return(total_return, years):
    """
    Calculate annualized return
    计算年化收益率
    """
    return (1 + total_return) ** (1/years) - 1

# Example / 示例
years = 2  # 投资期限(年)
annualized_return = calculate_annualized_return(total_return, years)
print(f"Annualized Return / 年化收益率: {annualized_return:.2%}")
Enter fullscreen mode Exit fullscreen mode

1.4.2 风险指标 / Risk Metrics

1. 波动率 / Volatility

def calculate_volatility(returns):
    """
    Calculate portfolio volatility
    计算投资组合波动率
    """
    return returns.std() * np.sqrt(252)  # Annualized / 年化

# Example / 示例
daily_returns = np.random.normal(0.001, 0.02, 252)  # Simulated daily returns / 模拟日收益率
volatility = calculate_volatility(pd.Series(daily_returns))
print(f"Volatility / 波动率: {volatility:.2%}")
Enter fullscreen mode Exit fullscreen mode

2. 最大回撤 / Maximum Drawdown

def calculate_max_drawdown(portfolio_values):
    """
    Calculate maximum drawdown
    计算最大回撤
    """
    # Calculate running maximum / 计算运行最大值
    running_max = portfolio_values.expanding().max()

    # Calculate drawdown / 计算回撤
    drawdown = (portfolio_values - running_max) / running_max

    # Return maximum drawdown / 返回最大回撤
    return drawdown.min()

# Example / 示例
portfolio_values = pd.Series([1000, 1100, 1050, 1200, 1000, 1150])
max_dd = calculate_max_drawdown(portfolio_values)
print(f"Maximum Drawdown / 最大回撤: {max_dd:.2%}")
Enter fullscreen mode Exit fullscreen mode

1.4.3 风险调整收益指标 / Risk-Adjusted Return Metrics

1. 夏普比率 / Sharpe Ratio

def calculate_sharpe_ratio(returns, risk_free_rate=0.02):
    """
    Calculate Sharpe ratio
    计算夏普比率

    Parameters:
    - returns: Portfolio returns / 投资组合收益率
    - risk_free_rate: Risk-free rate (annualized) / 无风险利率(年化)
    """
    excess_returns = returns.mean() * 252 - risk_free_rate
    volatility = returns.std() * np.sqrt(252)
    return excess_returns / volatility

# Example / 示例
sharpe_ratio = calculate_sharpe_ratio(pd.Series(daily_returns))
print(f"Sharpe Ratio / 夏普比率: {sharpe_ratio:.2f}")
Enter fullscreen mode Exit fullscreen mode

2. 信息比率 / Information Ratio

def calculate_information_ratio(portfolio_returns, benchmark_returns):
    """
    Calculate Information Ratio
    计算信息比率
    """
    excess_returns = portfolio_returns - benchmark_returns
    tracking_error = excess_returns.std() * np.sqrt(252)
    active_return = excess_returns.mean() * 252

    return active_return / tracking_error

# Example / 示例
benchmark_returns = np.random.normal(0.0008, 0.015, 252)  # Benchmark returns / 基准收益率
info_ratio = calculate_information_ratio(
    pd.Series(daily_returns), 
    pd.Series(benchmark_returns)
)
print(f"Information Ratio / 信息比率: {info_ratio:.2f}")
Enter fullscreen mode Exit fullscreen mode

1.5 量化投资的优势与挑战 / Advantages and Challenges of Quantitative Investment

1.5.1 优势 / Advantages

  1. 客观性 / Objectivity: 减少情绪化决策 / Reduce emotional decision-making
  2. 规模化 / Scalability: 可同时处理大量投资标的 / Can handle large numbers of investment targets simultaneously
  3. 一致性 / Consistency: 策略执行的一致性 / Consistency in strategy execution
  4. 效率 / Efficiency: 自动化处理提高效率 / Automated processing improves efficiency

1.5.2 挑战 / Challenges

  1. 模型风险 / Model Risk: 模型可能过拟合或失效 / Models may overfit or fail
  2. 数据质量 / Data Quality: 依赖高质量数据 / Depends on high-quality data
  3. 市场变化 / Market Changes: 市场环境变化可能导致策略失效 / Market environment changes may cause strategy failure
  4. 技术复杂性 / Technical Complexity: 需要专业的技术知识 / Requires professional technical knowledge

本章小结 / Chapter Summary

本章介绍了量化投资的基本概念、发展历程、核心流程和评价体系。量化投资通过数据驱动、模型化的方法来制定投资决策,具有客观性、规模化等优势,但也面临模型风险、数据质量等挑战。

This chapter introduced the basic concepts, development history, core processes, and evaluation system of quantitative investment. Quantitative investment uses data-driven, model-based methods to make investment decisions, with advantages such as objectivity and scalability, but also faces challenges such as model risk and data quality.

掌握这些基础知识为后续学习Qlib平台和实际量化策略开发奠定了重要基础。

Mastering this foundational knowledge lays an important foundation for subsequent learning of the Qlib platform and actual quantitative strategy development.

练习题 / Exercises

  1. 解释量化投资与传统投资的主要区别 / Explain the main differences between quantitative and traditional investment

  2. 计算给定投资组合的夏普比率 / Calculate the Sharpe ratio for a given portfolio

  3. 实现一个简单的动量策略 / Implement a simple momentum strategy

  4. 分析量化投资在不同市场环境下的表现 / Analyze the performance of quantitative investment in different market environments


下一章预告 / Next Chapter Preview:
第2章将介绍Qlib平台,包括安装配置、基本使用方法和核心功能。
Chapter 2 will introduce the Qlib platform, including installation and configuration, basic usage, and core features.

Top comments (0)