DEV Community

Henry Lin
Henry Lin

Posted on

Lesson 24.3: Binance Futures Trading Operations Detailed Guide

Lesson 24.3: Binance Futures Trading Operations Detailed Guide

⏱ Duration: 2.5 hours
🎯 Learning Objectives: Master Binance futures trading API operations, learn safe leverage trading


⚠️ Important Risk Warning

Futures trading carries extremely high risks, beginners should operate with extreme caution!

🔴 High Risk Warning:
- Futures trading has leverage effects and may result in loss of entire capital
- Severe market volatility may cause forced liquidation
- Funding rates and trading costs are relatively high
- Requires rich trading experience and strong psychological discipline

📋 Suitable for:
- Those with extensive spot trading experience
- Deep understanding of leverage risks
- Those with comprehensive risk management strategies
- Those who can withstand significant capital losses

💡 Recommendation: Start with small capital for testing, gradually increase after fully understanding the mechanisms
Enter fullscreen mode Exit fullscreen mode

Course Overview

Futures trading is an advanced form of cryptocurrency trading that can amplify gains through leverage, but also amplifies risks.

Key Focus of This Lesson:

Leverage is a double-edged sword, amplifying both gains and losses. Use cautiously with strict risk control.

This lesson will cover in detail:

  • Binance futures API configuration and usage
  • Leverage and margin management
  • Futures order types and operations
  • Risk management and capital control

Part 1: Binance Futures API Configuration

1.1 API Permission Settings

1.1.1 Futures Trading Permissions

On the Binance API management page, you need to enable the following permissions:

✅ Required:
□ Enable Reading
□ Enable Futures Trading

⚠️ Optional (use with caution):
□ Enable Margin Trading

❌ Absolutely Prohibited:
□ Enable Withdrawals - Never enable!
Enter fullscreen mode Exit fullscreen mode

1.1.2 Futures Account Preparation

# 1. Transfer funds from spot account to futures account
# Operate on Binance web version or APP:
# Wallet → Transfer → From Spot Account to USDT-M Futures Account

# 2. Recommended initial capital
# Beginners: 100-500 USDT
# Experienced: 1000-5000 USDT
# Advanced: 5000+ USDT
Enter fullscreen mode Exit fullscreen mode

1.2 Freqtrade Futures Configuration

1.2.1 Basic Configuration

{
  "exchange": {
    "name": "binance",
    "key": "${BINANCE_API_KEY}",
    "secret": "${BINANCE_API_SECRET}",
    "ccxt_config": {
      "enableRateLimit": true,
      "rateLimit": 50,
      "options": {
        "defaultType": "future"
      }
    },
    "ccxt_async_config": {
      "enableRateLimit": true,
      "rateLimit": 50
    }
  },

  "trading_mode": "futures",
  "margin_mode": "cross",
  "stake_currency": "USDT",
  "stake_amount": "unlimited",

  "pair_whitelist": [
    "BTC/USDT:USDT",
    "ETH/USDT:USDT",
    "BNB/USDT:USDT"
  ],

  "pair_blacklist": [
    ".*_.*"
  ]
}
Enter fullscreen mode Exit fullscreen mode

1.2.2 Leverage and Margin Configuration

{
  "trading_mode": "futures",
  "margin_mode": "cross",
  "liquidation_buffer": 0.05,

  "leverage": {
    "BTC/USDT:USDT": 3,
    "ETH/USDT:USDT": 2,
    "default": 2
  }
}
Enter fullscreen mode Exit fullscreen mode

Configuration Explanation:

  • trading_mode: "futures" indicates futures trading
  • margin_mode: "cross" for cross margin or "isolated" for isolated margin
  • liquidation_buffer: Liquidation buffer, default 5%
  • leverage: Leverage multiplier for each trading pair

1.3 API Connection Testing

import ccxt

# Create Binance futures exchange instance
exchange = ccxt.binance({
    'apiKey': 'your_api_key',
    'secret': 'your_secret',
    'options': {
        'defaultType': 'future'  # Set to futures mode
    },
    'enableRateLimit': True
})

# Test connection
def test_futures_connection():
    try:
        # Get account information
        balance = exchange.fetch_balance()
        print("✅ Futures API connection successful")

        # Check USDT balance
        usdt_balance = balance['USDT']['free']
        print(f"USDT Balance: {usdt_balance}")

        # Get position information
        positions = exchange.fetch_positions()
        open_positions = [p for p in positions if float(p['contracts']) != 0]
        print(f"Current open positions: {len(open_positions)}")

        return True

    except Exception as e:
        print(f"❌ API connection failed: {e}")
        return False

# Execute test
test_futures_connection()
Enter fullscreen mode Exit fullscreen mode

Part 2: Leverage and Margin Management

2.1 Leverage Principles and Risks

2.1.1 Leverage Calculation

Basic Concepts:

Leverage Multiplier = Total Position Value / Initial Margin
Margin = Total Position Value / Leverage Multiplier
Liquidation Price = Entry Price - (Margin / Contract Quantity)
Enter fullscreen mode Exit fullscreen mode

Calculation Example:

def calculate_leverage_details():
    """
    Calculate specific values for leveraged trading
    """
    # Example parameters
    entry_price = 30000  # BTC price
    leverage = 5         # 5x leverage
    position_size = 0.1  # 0.1 BTC
    contract_value = entry_price * position_size  # Contract value

    # Calculate margin
    margin = contract_value / leverage

    # Calculate liquidation price (simplified calculation)
    maintenance_margin_rate = 0.005  # 0.5% maintenance margin rate
    maintenance_margin = contract_value * maintenance_margin_rate
    liquidation_price = (margin - maintenance_margin) / position_size

    results = {
        'entry_price': entry_price,
        'leverage': leverage,
        'position_size': position_size,
        'contract_value': contract_value,
        'required_margin': margin,
        'liquidation_price': liquidation_price,
        'price_drop_to_liquidation': (entry_price - liquidation_price) / entry_price * 100
    }

    return results

# Output results
details = calculate_leverage_details()
print(f"Entry Price: ${details['entry_price']:,}")
print(f"Leverage: {details['leverage']}x")
print(f"Contract Value: ${details['contract_value']:,.2f}")
print(f"Required Margin: ${details['required_margin']:,.2f}")
print(f"Liquidation Price: ${details['liquidation_price']:,.2f}")
print(f"Price Drop to Liquidation: {details['price_drop_to_liquidation']:.2f}%")
Enter fullscreen mode Exit fullscreen mode

2.1.2 Risk Comparison of Different Leverages

def compare_leverage_risks():
    """
    Compare risks of different leverage multipliers
    """
    entry_price = 30000
    position_value = 1000  # $1000 position value
    leverages = [1, 2, 5, 10, 20]

    comparison = []
    for lev in leverages:
        margin = position_value / lev
        # Simplified liquidation calculation
        liquidation_drop = (position_value - margin) / position_value * 100

        comparison.append({
            'leverage': lev,
            'margin': margin,
            'liquidation_drop': liquidation_drop
        })

    return comparison

# Output comparison table
risks = compare_leverage_risks()
print("Leverage | Required Margin | Drop to Liquidation")
print("-" * 40)
for risk in risks:
    print(f"{risk['leverage']:8}x | ${risk['margin']:9.2f} | {risk['liquidation_drop']:9.2f}%")
Enter fullscreen mode Exit fullscreen mode

2.2 Margin Modes

2.2.1 Isolated Margin

Features:

✅ Advantages:
- Risk isolation, single position loss doesn't affect other positions
- High capital efficiency
- Suitable for single trading strategies

❌ Disadvantages:
- Each position requires independent margin management
- Relatively lower capital utilization
- Easy to be liquidated due to single position volatility
Enter fullscreen mode Exit fullscreen mode

Configuration:

{
  "margin_mode": "isolated",
  "isolated_margin": 0.1  // Reserve 10% buffer funds
}
Enter fullscreen mode Exit fullscreen mode

2.2.2 Cross Margin

Features:

✅ Advantages:
- Shared funds, reduces liquidation risk
- High capital utilization
- Suitable for multi-position strategies

❌ Disadvantages:
- Single large loss may affect all positions
- Fast risk propagation
- Requires stricter risk management
Enter fullscreen mode Exit fullscreen mode

Configuration:

{
  "margin_mode": "cross",
  "liquidation_buffer": 0.05  // 5% liquidation buffer
}
Enter fullscreen mode Exit fullscreen mode

2.3 Dynamic Leverage Adjustment

2.3.1 Volatility-Based Leverage Adjustment

class DynamicLeverageManager:
    def __init__(self, base_leverage=3, max_leverage=10):
        self.base_leverage = base_leverage
        self.max_leverage = max_leverage
        self.volatility_history = []

    def calculate_optimal_leverage(self, current_volatility):
        """
        Calculate optimal leverage based on volatility
        """
        self.volatility_history.append(current_volatility)

        # Keep last 30 days of volatility records
        if len(self.volatility_history) > 30:
            self.volatility_history.pop(0)

        # Calculate average volatility
        avg_volatility = sum(self.volatility_history) / len(self.volatility_history)

        # Adjust leverage based on volatility
        if current_volatility > avg_volatility * 1.5:  # High volatility
            multiplier = 0.5
        elif current_volatility > avg_volatility * 1.2:  # Medium volatility
            multiplier = 0.7
        elif current_volatility < avg_volatility * 0.8:  # Low volatility
            multiplier = 1.2
        else:  # Normal volatility
            multiplier = 1.0

        optimal_leverage = self.base_leverage * multiplier
        optimal_leverage = min(optimal_leverage, self.max_leverage)
        optimal_leverage = max(optimal_leverage, 1)  # At least 1x leverage

        return optimal_leverage

    def update_leverage(self, exchange, symbol, new_leverage):
        """
        Update leverage multiplier
        """
        try:
            exchange.set_leverage(new_leverage, symbol)
            print(f"Updated {symbol} leverage to {new_leverage}x")
            return True
        except Exception as e:
            print(f"Failed to update leverage: {e}")
            return False

# Usage example
leverage_manager = DynamicLeverageManager(base_leverage=3)
current_vol = 0.03  # 3% daily volatility
optimal_lev = leverage_manager.calculate_optimal_leverage(current_vol)
print(f"Recommended leverage: {optimal_lev}x")
Enter fullscreen mode Exit fullscreen mode

2.3.2 Account Risk-Based Leverage Adjustment

def calculate_risk_adjusted_leverage(account_balance, total_position_value, max_risk_ratio=0.3):
    """
    Adjust leverage based on account risk
    """
    # Calculate current position risk
    current_risk_ratio = total_position_value / account_balance

    # Adjust leverage based on risk ratio
    if current_risk_ratio > max_risk_ratio:
        # Risk too high, reduce leverage
        risk_adjustment = max_risk_ratio / current_risk_ratio
    else:
        # Risk controllable, can use standard leverage
        risk_adjustment = 1.0

    # Calculate final leverage
    base_leverage = 3
    final_leverage = base_leverage * risk_adjustment

    # Ensure leverage is within reasonable range
    final_leverage = max(final_leverage, 1)
    final_leverage = min(final_leverage, 10)

    return final_leverage

# Usage example
account_balance = 1000
total_position_value = 800
recommended_leverage = calculate_risk_adjusted_leverage(account_balance, total_position_value)
print(f"Risk-adjusted recommended leverage: {recommended_leverage}x")
Enter fullscreen mode Exit fullscreen mode

Part 3: Futures Order Operations

3.1 Futures Order Types

3.1.1 Opening Long Position

def open_long_position(exchange, symbol, amount_usdt, leverage):
    """
    Open long position
    """
    try:
        # Set leverage
        exchange.set_leverage(leverage, symbol)

        # Get current price
        ticker = exchange.fetch_ticker(symbol)
        current_price = ticker['last']

        # Calculate purchase quantity
        amount = amount_usdt / current_price

        # Create limit buy order (long)
        order = exchange.create_limit_buy_order(
            symbol=symbol,
            amount=amount,
            price=current_price * 0.999  # Slightly below market price
        )

        print(f"✅ Long position opened successfully")
        print(f"Trading Pair: {symbol}")
        print(f"Quantity: {amount:.6f}")
        print(f"Price: ${current_price:.2f}")
        print(f"Leverage: {leverage}x")
        print(f"Order ID: {order['id']}")

        return order

    except Exception as e:
        print(f"❌ Failed to open long position: {e}")
        return None
Enter fullscreen mode Exit fullscreen mode

3.1.2 Opening Short Position

def open_short_position(exchange, symbol, amount_usdt, leverage):
    """
    Open short position
    """
    try:
        # Set leverage
        exchange.set_leverage(leverage, symbol)

        # Get current price
        ticker = exchange.fetch_ticker(symbol)
        current_price = ticker['last']

        # Calculate sell quantity
        amount = amount_usdt / current_price

        # Create limit sell order (short)
        order = exchange.create_limit_sell_order(
            symbol=symbol,
            amount=amount,
            price=current_price * 1.001  # Slightly above market price
        )

        print(f"✅ Short position opened successfully")
        print(f"Trading Pair: {symbol}")
        print(f"Quantity: {amount:.6f}")
        print(f"Price: ${current_price:.2f}")
        print(f"Leverage: {leverage}x")
        print(f"Order ID: {order['id']}")

        return order

    except Exception as e:
        print(f"❌ Failed to open short position: {e}")
        return None
Enter fullscreen mode Exit fullscreen mode

3.1.3 Position Closing

def close_position(exchange, symbol):
    """
    Close position
    """
    try:
        # Get current position
        positions = exchange.fetch_positions([symbol])
        position = positions[0]

        if float(position['contracts']) == 0:
            print("No position to close")
            return None

        position_size = abs(float(position['contracts']))
        side = position['side']

        # Determine close direction based on position side
        if side == 'long':
            # Close long position: sell
            order = exchange.create_market_sell_order(symbol, position_size)
        else:
            # Close short position: buy
            order = exchange.create_market_buy_order(symbol, position_size)

        print(f"✅ Position closed successfully")
        print(f"Close Direction: {side}")
        print(f"Close Quantity: {position_size}")
        print(f"Order ID: {order['id']}")

        return order

    except Exception as e:
        print(f"❌ Failed to close position: {e}")
        return None
Enter fullscreen mode Exit fullscreen mode

3.2 Futures Stop Loss Settings

3.2.1 Take Profit Orders

def set_take_profit_order(exchange, symbol, side, amount, take_profit_price):
    """
    Set take profit order
    """
    try:
        if side == 'long':
            # Long position take profit: sell
            order = exchange.create_order(
                symbol=symbol,
                type='limit',
                side='sell',
                amount=amount,
                price=take_profit_price,
                params={'reduceOnly': True}
            )
        else:
            # Short position take profit: buy
            order = exchange.create_order(
                symbol=symbol,
                type='limit',
                side='buy',
                amount=amount,
                price=take_profit_price,
                params={'reduceOnly': True}
            )

        print(f"✅ Take profit order set successfully")
        print(f"Take Profit Price: ${take_profit_price}")
        print(f"Order ID: {order['id']}")

        return order

    except Exception as e:
        print(f"❌ Failed to set take profit: {e}")
        return None
Enter fullscreen mode Exit fullscreen mode

3.2.2 Stop Loss Orders

def set_stop_loss_order(exchange, symbol, side, amount, stop_loss_price):
    """
    Set stop loss order
    """
    try:
        if side == 'long':
            # Long position stop loss: sell
            order = exchange.create_order(
                symbol=symbol,
                type='stop_market',
                side='sell',
                amount=amount,
                params={'stopPrice': stop_loss_price, 'reduceOnly': True}
            )
        else:
            # Short position stop loss: buy
            order = exchange.create_order(
                symbol=symbol,
                type='stop_market',
                side='buy',
                amount=amount,
                params={'stopPrice': stop_loss_price, 'reduceOnly': True}
            )

        print(f"✅ Stop loss order set successfully")
        print(f"Stop Loss Price: ${stop_loss_price}")
        print(f"Order ID: {order['id']}")

        return order

    except Exception as e:
        print(f"❌ Failed to set stop loss: {e}")
        return None
Enter fullscreen mode Exit fullscreen mode

3.3 Position Monitoring

3.3.1 Real-time Position Monitoring

class PositionMonitor:
    def __init__(self, exchange):
        self.exchange = exchange
        self.positions = {}

    def update_positions(self):
        """
        Update position information
        """
        try:
            positions = self.exchange.fetch_positions()
            for pos in positions:
                if float(pos['contracts']) != 0:
                    self.positions[pos['symbol']] = {
                        'side': pos['side'],
                        'size': float(pos['contracts']),
                        'entry_price': float(pos['entryPrice']),
                        'mark_price': float(pos['markPrice']),
                        'unrealized_pnl': float(pos['unrealizedPnl']),
                        'percentage': float(pos['percentage']),
                        'liquidation_price': float(pos['liquidationPrice'])
                    }
        except Exception as e:
            print(f"Failed to update positions: {e}")

    def get_position_risk(self, symbol):
        """
        Get position risk indicators
        """
        if symbol not in self.positions:
            return None

        pos = self.positions[symbol]
        entry_price = pos['entry_price']
        mark_price = pos['mark_price']
        liquidation_price = pos['liquidation_price']

        # Calculate percentage distance to liquidation
        if pos['side'] == 'long':
            distance_to_liquidation = (mark_price - liquidation_price) / entry_price * 100
        else:
            distance_to_liquidation = (liquidation_price - mark_price) / entry_price * 100

        risk_level = 'low'
        if distance_to_liquidation < 5:
            risk_level = 'critical'
        elif distance_to_liquidation < 10:
            risk_level = 'high'
        elif distance_to_liquidation < 20:
            risk_level = 'medium'

        return {
            'symbol': symbol,
            'risk_level': risk_level,
            'distance_to_liquidation': distance_to_liquidation,
            'unrealized_pnl': pos['unrealized_pnl'],
            'pnl_percentage': pos['percentage']
        }

    def print_position_summary(self):
        """
        Print position summary
        """
        print("\n=== Position Summary ===")
        if not self.positions:
            print("No positions")
            return

        for symbol, pos in self.positions.items():
            risk = self.get_position_risk(symbol)
            print(f"\nTrading Pair: {symbol}")
            print(f"Side: {pos['side']}")
            print(f"Position Size: {pos['size']}")
            print(f"Entry Price: ${pos['entry_price']:.2f}")
            print(f"Mark Price: ${pos['mark_price']:.2f}")
            print(f"Unrealized PnL: ${pos['unrealized_pnl']:.2f} ({pos['percentage']:.2f}%)")
            print(f"Risk Level: {risk['risk_level'].upper()}")
            print(f"Distance to Liquidation: {risk['distance_to_liquidation']:.2f}%")

# Usage example
monitor = PositionMonitor(exchange)
monitor.update_positions()
monitor.print_position_summary()
Enter fullscreen mode Exit fullscreen mode

3.3.2 Liquidation Risk Alert

class LiquidationAlert:
    def __init__(self, exchange, alert_threshold=0.1):
        self.exchange = exchange
        self.alert_threshold = alert_threshold  # 10% alert threshold
        self.last_alert_time = {}

    def check_liquidation_risk(self):
        """
        Check liquidation risk
        """
        try:
            positions = self.exchange.fetch_positions()

            for pos in positions:
                if float(pos['contracts']) != 0:
                    symbol = pos['symbol']
                    current_price = float(pos['markPrice'])
                    liquidation_price = float(pos['liquidationPrice'])
                    entry_price = float(pos['entryPrice'])

                    # Calculate percentage distance to liquidation
                    if pos['side'] == 'long':
                        distance = (current_price - liquidation_price) / entry_price
                    else:
                        distance = (liquidation_price - current_price) / entry_price

                    # Check if alert needed
                    if distance < self.alert_threshold:
                        self.send_alert(symbol, pos, distance)

        except Exception as e:
            print(f"Failed to check liquidation risk: {e}")

    def send_alert(self, symbol, position, distance):
        """
        Send alert
        """
        current_time = time.time()

        # Avoid duplicate alerts (only alert once per pair within 5 minutes)
        if (symbol in self.last_alert_time and
            current_time - self.last_alert_time[symbol] < 300):
            return

        self.last_alert_time[symbol] = current_time

        # Build alert message
        alert_message = f"""
🚨 Liquidation Risk Alert!

Trading Pair: {symbol}
Side: {position['side']}
Position: {position['contracts']}
Distance to Liquidation: {distance:.2%}
Current Price: ${position['markPrice']}
Liquidation Price: ${position['liquidationPrice']}
Unrealized PnL: {position['unrealizedPnl']}

Please check position status immediately!
        """

        print(alert_message)

        # Here you can add Telegram or other notification methods
        # send_telegram_alert(alert_message)

# Usage example
alert = LiquidationAlert(exchange, alert_threshold=0.1)
alert.check_liquidation_risk()
Enter fullscreen mode Exit fullscreen mode

Part 4: Risk Management Strategies

4.1 Position Management

4.1.1 Kelly Formula Application

def calculate_kelly_position_size(win_rate, avg_win, avg_loss, account_balance):
    """
    Calculate optimal position size using Kelly formula
    """
    # Kelly formula: f = (bp - q) / b
    # b = win odds, p = win rate, q = loss rate

    b = avg_win / abs(avg_loss)  # Win odds
    p = win_rate  # Win rate
    q = 1 - p  # Loss rate

    # Calculate Kelly fraction
    kelly_fraction = (b * p - q) / b

    # Conservative adjustment (use only half of Kelly fraction)
    conservative_fraction = kelly_fraction * 0.5

    # Ensure fraction is within reasonable range
    conservative_fraction = max(conservative_fraction, 0.01)  # At least 1%
    conservative_fraction = min(conservative_fraction, 0.25)  # At most 25%

    position_size = account_balance * conservative_fraction

    return {
        'kelly_fraction': kelly_fraction,
        'recommended_fraction': conservative_fraction,
        'position_size': position_size
    }

# Usage example
win_rate = 0.55
avg_win = 150  # Average win of 150 USDT
avg_loss = 100  # Average loss of 100 USDT
account_balance = 1000

result = calculate_kelly_position_size(win_rate, avg_win, avg_loss, account_balance)
print(f"Kelly formula recommended position: ${result['position_size']:.2f} USDT")
print(f"Recommended position fraction: {result['recommended_fraction']:.2%}")
Enter fullscreen mode Exit fullscreen mode

4.1.2 Risk Parity Strategy

def calculate_risk_parity_positions(volatilities, account_balance, target_risk=0.02):
    """
    Risk parity position calculation
    """
    # Calculate weights for each asset (inversely proportional to volatility)
    inverse_vols = [1/vol for vol in volatilities]
    total_inverse_vol = sum(inverse_vols)

    weights = [inv_vol/total_inverse_vol for inv_vol in inverse_vols]

    # Calculate position size for each asset
    positions = []
    for i, weight in enumerate(weights):
        # Target risk 2%, calculate position size
        position_size = (account_balance * weight * target_risk) / volatilities[i]
        positions.append({
            'asset': f'Asset_{i+1}',
            'weight': weight,
            'volatility': volatilities[i],
            'position_size': position_size
        })

    return positions

# Usage example
volatilities = [0.03, 0.04, 0.05]  # Volatilities for BTC, ETH, BNB
account_balance = 1000
positions = calculate_risk_parity_positions(volatilities, account_balance)

for pos in positions:
    print(f"{pos['asset']}: Weight={pos['weight']:.2%}, Position=${pos['position_size']:.2f}")
Enter fullscreen mode Exit fullscreen mode

4.2 Capital Management Strategies

4.2.1 Fixed Ratio Position Management

class FixedRatioPositionManager:
    def __init__(self, initial_balance, risk_per_trade=0.02, max_positions=3):
        self.initial_balance = initial_balance
        self.current_balance = initial_balance
        self.risk_per_trade = risk_per_trade
        self.max_positions = max_positions
        self.open_positions = {}

    def calculate_position_size(self, stop_loss_pct, leverage=1):
        """
        Calculate position size
        """
        # Risk amount per trade
        risk_amount = self.current_balance * self.risk_per_trade

        # Position size considering leverage
        position_size = risk_amount / (stop_loss_pct / leverage)

        # Ensure not exceeding certain percentage of account balance
        max_position = self.current_balance * 0.3  # Max 30% per position
        position_size = min(position_size, max_position)

        return position_size

    def can_open_position(self, position_size):
        """
        Check if new position can be opened
        """
        # Check position count
        if len(self.open_positions) >= self.max_positions:
            return False, "Maximum positions reached"

        # Check fund sufficiency
        total_position_value = sum(pos['size'] for pos in self.open_positions.values())
        if total_position_value + position_size > self.current_balance * 0.8:
            return False, "Insufficient funds"

        return True, "Can open position"

    def add_position(self, symbol, position_size, entry_price, stop_loss):
        """
        Add new position
        """
        self.open_positions[symbol] = {
            'size': position_size,
            'entry_price': entry_price,
            'stop_loss': stop_loss,
            'entry_time': datetime.now()
        }

    def close_position(self, symbol, exit_price):
        """
        Close position
        """
        if symbol not in self.open_positions:
            return None

        position = self.open_positions[symbol]
        pnl = (exit_price - position['entry_price']) / position['entry_price'] * position['size']

        # Update account balance
        self.current_balance += pnl

        # Remove position
        del self.open_positions[symbol]

        return pnl

# Usage example
manager = FixedRatioPositionManager(initial_balance=1000, risk_per_trade=0.02)
position_size = manager.calculate_position_size(stop_loss_pct=0.05, leverage=3)
can_open, reason = manager.can_open_position(position_size)

print(f"Recommended position size: ${position_size:.2f}")
print(f"Can open position: {can_open}")
print(f"Reason: {reason}")
Enter fullscreen mode Exit fullscreen mode

4.2.2 Dynamic Capital Management

class DynamicCapitalManager:
    def __init__(self, initial_balance, max_drawdown=0.20):
        self.initial_balance = initial_balance
        self.current_balance = initial_balance
        self.peak_balance = initial_balance
        self.max_drawdown = max_drawdown
        self.trade_history = []

    def update_balance(self, pnl):
        """
        Update account balance
        """
        self.current_balance += pnl
        self.peak_balance = max(self.peak_balance, self.current_balance)
        self.trade_history.append({
            'timestamp': datetime.now(),
            'pnl': pnl,
            'balance': self.current_balance
        })

    def calculate_dynamic_position_size(self, base_position_size):
        """
        Dynamically adjust position size based on current drawdown
        """
        # Calculate current drawdown
        current_drawdown = (self.peak_balance - self.current_balance) / self.peak_balance

        # Adjust position based on drawdown
        if current_drawdown > self.max_drawdown * 0.8:  # Drawdown over 80%
            position_multiplier = 0.5  # Halve position
        elif current_drawdown > self.max_drawdown * 0.5:  # Drawdown over 50%
            position_multiplier = 0.7  # Reduce position by 30%
        elif current_drawdown < 0.05:  # Drawdown less than 5%, near new high
            position_multiplier = 1.2  # Increase position by 20%
        else:
            position_multiplier = 1.0  # Normal position

        adjusted_position_size = base_position_size * position_multiplier

        return adjusted_position_size, current_drawdown

    def should_stop_trading(self):
        """
        Check if trading should be stopped
        """
        current_drawdown = (self.peak_balance - self.current_balance) / self.peak_balance

        # Stop trading if drawdown exceeds maximum limit
        if current_drawdown >= self.max_drawdown:
            return True, f"Drawdown {current_drawdown:.1%} exceeds maximum limit {self.max_drawdown:.1%}"

        # Check consecutive losses
        recent_trades = self.trade_history[-10:]  # Last 10 trades
        if len(recent_trades) >= 5:
            consecutive_losses = sum(1 for trade in recent_trades if trade['pnl'] < 0)
            if consecutive_losses >= 5:
                return True, "5 consecutive losses, recommend pausing trading"

        return False, "Can continue trading"

# Usage example
manager = DynamicCapitalManager(initial_balance=1000, max_drawdown=0.20)

# Simulate some trades
trades = [50, -30, -80, 100, -50, -150, 80, 120, -40, 60]
for trade_pnl in trades:
    manager.update_balance(trade_pnl)
    should_stop, reason = manager.should_stop_trading()

    if should_stop:
        print(f"⚠️ {reason}")
        break

    # Calculate dynamic position
    adjusted_size, drawdown = manager.calculate_dynamic_position_size(100)
    print(f"Current drawdown: {drawdown:.1%}, Adjusted position: ${adjusted_size:.2f}")
Enter fullscreen mode Exit fullscreen mode

Part 5: Practical Strategy Configuration

5.1 Conservative Futures Strategy

class ConservativeFuturesStrategy(IStrategy):
    """
    Conservative futures strategy
    """
    # Basic settings
    leverage = 2  # 2x leverage
    stoploss = -0.05  # 5% stop loss
    timeframe = '1h'

    # Trailing stop loss
    trailing_stop = True
    trailing_stop_positive = 0.02  # Start trailing after 2% profit
    trailing_stop_positive_offset = 0.04  # 2% trailing distance

    # Position management
    position_size = 0.1  # 10% of capital

    def leverage(self, pair: str, current_time: datetime, current_rate: float,
                 proposed_leverage: float, max_leverage: int, entry_tag: str, side: str,
                 **kwargs) -> float:

        # Conservative strategy always uses 2x leverage
        return min(2, max_leverage)

    def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
                           proposed_stake: float, min_stake: float, max_stake: float,
                           leverage: float, entry_tag: str, side: str, **kwargs) -> float:

        # Use maximum 10% of capital
        available_balance = self.wallets.get_total_stake_amount()
        custom_stake = available_balance * self.position_size

        return min(custom_stake, max_stake)

    def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
        # Moving averages
        dataframe['sma_fast'] = ta.SMA(dataframe, timeperiod=10)
        dataframe['sma_slow'] = ta.SMA(dataframe, timeperiod=30)

        # RSI
        dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)

        # MACD
        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd['macd']
        dataframe['macdsignal'] = macd['macdsignal']

        return dataframe

    def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
        dataframe.loc[
            (
                (dataframe['sma_fast'] > dataframe['sma_slow']) &  # Fast above slow
                (dataframe['macd'] > dataframe['macdsignal']) &  # MACD golden cross
                (dataframe['rsi'] > 30) & (dataframe['rsi'] < 70)  # RSI in reasonable range
            ),
            ['enter_long', 'enter_tag']
        ] = (1, 'conservative_long')

        return dataframe

    def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
        dataframe.loc[
            (
                (dataframe['sma_fast'] < dataframe['sma_slow']) |  # Fast breaks below slow
                (dataframe['rsi'] > 80)  # RSI overbought
            ),
            ['exit_long', 'exit_tag']
        ] = (1, 'conservative_exit')

        return dataframe
Enter fullscreen mode Exit fullscreen mode

5.2 Aggressive Futures Strategy

class AggressiveFuturesStrategy(IStrategy):
    """
    Aggressive futures strategy
    """
    # Basic settings
    leverage = 5  # 5x leverage
    stoploss = -0.08  # 8% stop loss
    timeframe = '15m'  # Short time frame

    # Trailing stop loss
    trailing_stop = True
    trailing_stop_positive = 0.01  # Start trailing after 1% profit
    trailing_stop_positive_offset = 0.02  # 1% trailing distance

    # Position management
    position_size = 0.2  # 20% of capital

    def leverage(self, pair: str, current_time: datetime, current_rate: float,
                 proposed_leverage: float, max_leverage: int, entry_tag: str, side: str,
                 **kwargs) -> float:

        # Adjust leverage based on market volatility
        dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
        last_candle = dataframe.iloc[-1]

        # Calculate ATR as volatility indicator
        atr = last_candle.get('atr', current_rate * 0.02)
        volatility = atr / current_rate

        if volatility > 0.03:  # High volatility
            return min(3, max_leverage)
        elif volatility < 0.01:  # Low volatility
            return min(8, max_leverage)
        else:  # Normal volatility
            return min(5, max_leverage)

    def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
                           proposed_stake: float, min_stake: float, max_stake: float,
                           leverage: float, entry_tag: str, side: str, **kwargs) -> float:

        # Adjust position based on signal strength
        dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
        last_candle = dataframe.iloc[-1]

        # Calculate signal strength
        rsi = last_candle.get('rsi', 50)
        if rsi < 30:  # Oversold, strong signal
            position_multiplier = 1.5
        elif rsi < 50:  # Leaning weak, medium signal
            position_multiplier = 1.0
        else:
            position_multiplier = 0.8  # Weak signal

        available_balance = self.wallets.get_total_stake_amount()
        custom_stake = available_balance * self.position_size * position_multiplier

        return min(custom_stake, max_stake)

    def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
        # Technical indicators
        dataframe['ema_fast'] = ta.EMA(dataframe, timeperiod=9)
        dataframe['ema_slow'] = ta.EMA(dataframe, timeperiod=21)

        dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
        dataframe['stoch_rsi_k'] = ta.STOCHRSI(dataframe)['fastk']
        dataframe['stoch_rsi_d'] = ta.STOCHRSI(dataframe)['fastd']

        # Volatility indicators
        dataframe['atr'] = ta.ATR(dataframe, timeperiod=14)

        return dataframe

    def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
        # Aggressive long signals
        dataframe.loc[
            (
                (dataframe['ema_fast'] > dataframe['ema_slow']) &
                (dataframe['stoch_rsi_k'] < 20) &  # StochRSI oversold
                (dataframe['rsi'] < 35)  # RSI oversold
            ),
            ['enter_long', 'enter_tag']
        ] = (1, 'aggressive_long')

        # Aggressive short signals
        dataframe.loc[
            (
                (dataframe['ema_fast'] < dataframe['ema_slow']) &
                (dataframe['stoch_rsi_k'] > 80) &  # StochRSI overbought
                (dataframe['rsi'] > 65)  # RSI overbought
            ),
            ['enter_short', 'enter_tag']
        ] = (1, 'aggressive_short')

        return dataframe

    def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
        # Quick take profit
        dataframe.loc[
            (
                (dataframe['rsi'] > 70) |  # RSI overbought
                (dataframe['stoch_rsi_k'] > 80)  # StochRSI overbought
            ),
            ['exit_long', 'exit_tag']
        ] = (1, 'quick_profit')

        dataframe.loc[
            (
                (dataframe['rsi'] < 30) |  # RSI oversold
                (dataframe['stoch_rsi_k'] < 20)  # StochRSI oversold
            ),
            ['exit_short', 'exit_tag']
        ] = (1, 'quick_profit')

        return dataframe
Enter fullscreen mode Exit fullscreen mode

📝 Practical Tasks

Task 1: Simulated Futures Trading

  1. Register a futures account on Binance testnet
  2. Transfer test funds
  3. Use API to open long/short positions
  4. Practice setting take profit and stop loss
  5. Observe position changes and PnL

Task 2: Leverage Risk Testing

  1. Conduct simulated trading with different leverage multipliers
  2. Record liquidation prices for each leverage
  3. Test the impact of market volatility on positions
  4. Summarize the relationship between leverage and risk

Task 3: Risk Management Exercise

  1. Set position management rules
  2. Implement liquidation risk alerts
  3. Test response strategies for different market conditions
  4. Optimize capital management parameters

📌 Key Points

Futures Trading Safety Principles

1. Leverage Control
   ✅ Beginners should not exceed 3x leverage
   ✅ Experienced traders should not exceed 5x leverage
   ✅ Never use leverage above 10x
   ✅ Adjust leverage based on market volatility

2. Position Management
   ✅ Single position should not exceed 20% of total capital
   ✅ Total positions should not exceed 80% of total capital
   ✅ Strictly set stop losses
   ✅ Use trailing take profit to protect profits

3. Risk Monitoring
   ✅ Real-time monitoring of liquidation risks
   ✅ Set price alerts
   ✅ Regularly check position status
   ✅ Establish emergency plans
Enter fullscreen mode Exit fullscreen mode

Common Futures Trading Mistakes

Mistake Consequence Correct Approach
Using excessive leverage Easy liquidation Control leverage at 3-5x
No stop loss May lose all capital Set strict stop losses
Full position trading No buffer margin Keep sufficient margin
Ignoring funding rates Additional cost losses Monitor funding rates
Adding to losing positions Amplifying losses Follow trends, cut losses timely

Futures Trading Checklist

Pre-trade Checks:
□ Leverage multiplier set reasonably
□ Stop loss price set
□ Position size meets risk requirements
□ Sufficient margin
□ Understand funding rates

During-trade Monitoring:
□ Position PnL status
□ Distance to liquidation price
□ Major market volatility
□ Funding rate changes
□ Technical indicator signals

Post-trade Summary:
□ PnL analysis
□ Strategy effectiveness evaluation
□ Risk control review
□ Parameter optimization recommendations
Enter fullscreen mode Exit fullscreen mode

🎯 Next Lesson Preview

Lesson 24.4: Advanced Leverage Trading Techniques

In the next lesson, we will learn:

  • Funding rate arbitrage strategies
  • Spot-futures arbitrage operations
  • Long-short hedging strategies
  • Advanced risk hedging techniques

After mastering basic futures trading operations, we will explore more advanced leverage trading strategies and arbitrage opportunities.


⚠️ Final Reminder: Futures trading carries extremely high risks. Please be sure to practice with small capital only after fully understanding the mechanisms and risks. Protecting capital is always the top priority!

Top comments (0)