Lesson 24.3: Binance Futures Trading Operations Detailed Guide
⏱ Duration: 2.5 hours
🎯 Learning Objectives: Master Binance futures trading API operations, learn safe leverage trading
⚠️ Important Risk Warning
Futures trading carries extremely high risks, beginners should operate with extreme caution!
🔴 High Risk Warning:
- Futures trading has leverage effects and may result in loss of entire capital
- Severe market volatility may cause forced liquidation
- Funding rates and trading costs are relatively high
- Requires rich trading experience and strong psychological discipline
📋 Suitable for:
- Those with extensive spot trading experience
- Deep understanding of leverage risks
- Those with comprehensive risk management strategies
- Those who can withstand significant capital losses
💡 Recommendation: Start with small capital for testing, gradually increase after fully understanding the mechanisms
Course Overview
Futures trading is an advanced form of cryptocurrency trading that can amplify gains through leverage, but also amplifies risks.
Key Focus of This Lesson:
Leverage is a double-edged sword, amplifying both gains and losses. Use cautiously with strict risk control.
This lesson will cover in detail:
- Binance futures API configuration and usage
- Leverage and margin management
- Futures order types and operations
- Risk management and capital control
Part 1: Binance Futures API Configuration
1.1 API Permission Settings
1.1.1 Futures Trading Permissions
On the Binance API management page, you need to enable the following permissions:
✅ Required:
□ Enable Reading
□ Enable Futures Trading
⚠️ Optional (use with caution):
□ Enable Margin Trading
❌ Absolutely Prohibited:
□ Enable Withdrawals - Never enable!
1.1.2 Futures Account Preparation
# 1. Transfer funds from spot account to futures account
# Operate on Binance web version or APP:
# Wallet → Transfer → From Spot Account to USDT-M Futures Account
# 2. Recommended initial capital
# Beginners: 100-500 USDT
# Experienced: 1000-5000 USDT
# Advanced: 5000+ USDT
1.2 Freqtrade Futures Configuration
1.2.1 Basic Configuration
{
"exchange": {
"name": "binance",
"key": "${BINANCE_API_KEY}",
"secret": "${BINANCE_API_SECRET}",
"ccxt_config": {
"enableRateLimit": true,
"rateLimit": 50,
"options": {
"defaultType": "future"
}
},
"ccxt_async_config": {
"enableRateLimit": true,
"rateLimit": 50
}
},
"trading_mode": "futures",
"margin_mode": "cross",
"stake_currency": "USDT",
"stake_amount": "unlimited",
"pair_whitelist": [
"BTC/USDT:USDT",
"ETH/USDT:USDT",
"BNB/USDT:USDT"
],
"pair_blacklist": [
".*_.*"
]
}
1.2.2 Leverage and Margin Configuration
{
"trading_mode": "futures",
"margin_mode": "cross",
"liquidation_buffer": 0.05,
"leverage": {
"BTC/USDT:USDT": 3,
"ETH/USDT:USDT": 2,
"default": 2
}
}
Configuration Explanation:
-
trading_mode: "futures" indicates futures trading -
margin_mode: "cross" for cross margin or "isolated" for isolated margin -
liquidation_buffer: Liquidation buffer, default 5% -
leverage: Leverage multiplier for each trading pair
1.3 API Connection Testing
import ccxt
# Create Binance futures exchange instance
exchange = ccxt.binance({
'apiKey': 'your_api_key',
'secret': 'your_secret',
'options': {
'defaultType': 'future' # Set to futures mode
},
'enableRateLimit': True
})
# Test connection
def test_futures_connection():
try:
# Get account information
balance = exchange.fetch_balance()
print("✅ Futures API connection successful")
# Check USDT balance
usdt_balance = balance['USDT']['free']
print(f"USDT Balance: {usdt_balance}")
# Get position information
positions = exchange.fetch_positions()
open_positions = [p for p in positions if float(p['contracts']) != 0]
print(f"Current open positions: {len(open_positions)}")
return True
except Exception as e:
print(f"❌ API connection failed: {e}")
return False
# Execute test
test_futures_connection()
Part 2: Leverage and Margin Management
2.1 Leverage Principles and Risks
2.1.1 Leverage Calculation
Basic Concepts:
Leverage Multiplier = Total Position Value / Initial Margin
Margin = Total Position Value / Leverage Multiplier
Liquidation Price = Entry Price - (Margin / Contract Quantity)
Calculation Example:
def calculate_leverage_details():
"""
Calculate specific values for leveraged trading
"""
# Example parameters
entry_price = 30000 # BTC price
leverage = 5 # 5x leverage
position_size = 0.1 # 0.1 BTC
contract_value = entry_price * position_size # Contract value
# Calculate margin
margin = contract_value / leverage
# Calculate liquidation price (simplified calculation)
maintenance_margin_rate = 0.005 # 0.5% maintenance margin rate
maintenance_margin = contract_value * maintenance_margin_rate
liquidation_price = (margin - maintenance_margin) / position_size
results = {
'entry_price': entry_price,
'leverage': leverage,
'position_size': position_size,
'contract_value': contract_value,
'required_margin': margin,
'liquidation_price': liquidation_price,
'price_drop_to_liquidation': (entry_price - liquidation_price) / entry_price * 100
}
return results
# Output results
details = calculate_leverage_details()
print(f"Entry Price: ${details['entry_price']:,}")
print(f"Leverage: {details['leverage']}x")
print(f"Contract Value: ${details['contract_value']:,.2f}")
print(f"Required Margin: ${details['required_margin']:,.2f}")
print(f"Liquidation Price: ${details['liquidation_price']:,.2f}")
print(f"Price Drop to Liquidation: {details['price_drop_to_liquidation']:.2f}%")
2.1.2 Risk Comparison of Different Leverages
def compare_leverage_risks():
"""
Compare risks of different leverage multipliers
"""
entry_price = 30000
position_value = 1000 # $1000 position value
leverages = [1, 2, 5, 10, 20]
comparison = []
for lev in leverages:
margin = position_value / lev
# Simplified liquidation calculation
liquidation_drop = (position_value - margin) / position_value * 100
comparison.append({
'leverage': lev,
'margin': margin,
'liquidation_drop': liquidation_drop
})
return comparison
# Output comparison table
risks = compare_leverage_risks()
print("Leverage | Required Margin | Drop to Liquidation")
print("-" * 40)
for risk in risks:
print(f"{risk['leverage']:8}x | ${risk['margin']:9.2f} | {risk['liquidation_drop']:9.2f}%")
2.2 Margin Modes
2.2.1 Isolated Margin
Features:
✅ Advantages:
- Risk isolation, single position loss doesn't affect other positions
- High capital efficiency
- Suitable for single trading strategies
❌ Disadvantages:
- Each position requires independent margin management
- Relatively lower capital utilization
- Easy to be liquidated due to single position volatility
Configuration:
{
"margin_mode": "isolated",
"isolated_margin": 0.1 // Reserve 10% buffer funds
}
2.2.2 Cross Margin
Features:
✅ Advantages:
- Shared funds, reduces liquidation risk
- High capital utilization
- Suitable for multi-position strategies
❌ Disadvantages:
- Single large loss may affect all positions
- Fast risk propagation
- Requires stricter risk management
Configuration:
{
"margin_mode": "cross",
"liquidation_buffer": 0.05 // 5% liquidation buffer
}
2.3 Dynamic Leverage Adjustment
2.3.1 Volatility-Based Leverage Adjustment
class DynamicLeverageManager:
def __init__(self, base_leverage=3, max_leverage=10):
self.base_leverage = base_leverage
self.max_leverage = max_leverage
self.volatility_history = []
def calculate_optimal_leverage(self, current_volatility):
"""
Calculate optimal leverage based on volatility
"""
self.volatility_history.append(current_volatility)
# Keep last 30 days of volatility records
if len(self.volatility_history) > 30:
self.volatility_history.pop(0)
# Calculate average volatility
avg_volatility = sum(self.volatility_history) / len(self.volatility_history)
# Adjust leverage based on volatility
if current_volatility > avg_volatility * 1.5: # High volatility
multiplier = 0.5
elif current_volatility > avg_volatility * 1.2: # Medium volatility
multiplier = 0.7
elif current_volatility < avg_volatility * 0.8: # Low volatility
multiplier = 1.2
else: # Normal volatility
multiplier = 1.0
optimal_leverage = self.base_leverage * multiplier
optimal_leverage = min(optimal_leverage, self.max_leverage)
optimal_leverage = max(optimal_leverage, 1) # At least 1x leverage
return optimal_leverage
def update_leverage(self, exchange, symbol, new_leverage):
"""
Update leverage multiplier
"""
try:
exchange.set_leverage(new_leverage, symbol)
print(f"Updated {symbol} leverage to {new_leverage}x")
return True
except Exception as e:
print(f"Failed to update leverage: {e}")
return False
# Usage example
leverage_manager = DynamicLeverageManager(base_leverage=3)
current_vol = 0.03 # 3% daily volatility
optimal_lev = leverage_manager.calculate_optimal_leverage(current_vol)
print(f"Recommended leverage: {optimal_lev}x")
2.3.2 Account Risk-Based Leverage Adjustment
def calculate_risk_adjusted_leverage(account_balance, total_position_value, max_risk_ratio=0.3):
"""
Adjust leverage based on account risk
"""
# Calculate current position risk
current_risk_ratio = total_position_value / account_balance
# Adjust leverage based on risk ratio
if current_risk_ratio > max_risk_ratio:
# Risk too high, reduce leverage
risk_adjustment = max_risk_ratio / current_risk_ratio
else:
# Risk controllable, can use standard leverage
risk_adjustment = 1.0
# Calculate final leverage
base_leverage = 3
final_leverage = base_leverage * risk_adjustment
# Ensure leverage is within reasonable range
final_leverage = max(final_leverage, 1)
final_leverage = min(final_leverage, 10)
return final_leverage
# Usage example
account_balance = 1000
total_position_value = 800
recommended_leverage = calculate_risk_adjusted_leverage(account_balance, total_position_value)
print(f"Risk-adjusted recommended leverage: {recommended_leverage}x")
Part 3: Futures Order Operations
3.1 Futures Order Types
3.1.1 Opening Long Position
def open_long_position(exchange, symbol, amount_usdt, leverage):
"""
Open long position
"""
try:
# Set leverage
exchange.set_leverage(leverage, symbol)
# Get current price
ticker = exchange.fetch_ticker(symbol)
current_price = ticker['last']
# Calculate purchase quantity
amount = amount_usdt / current_price
# Create limit buy order (long)
order = exchange.create_limit_buy_order(
symbol=symbol,
amount=amount,
price=current_price * 0.999 # Slightly below market price
)
print(f"✅ Long position opened successfully")
print(f"Trading Pair: {symbol}")
print(f"Quantity: {amount:.6f}")
print(f"Price: ${current_price:.2f}")
print(f"Leverage: {leverage}x")
print(f"Order ID: {order['id']}")
return order
except Exception as e:
print(f"❌ Failed to open long position: {e}")
return None
3.1.2 Opening Short Position
def open_short_position(exchange, symbol, amount_usdt, leverage):
"""
Open short position
"""
try:
# Set leverage
exchange.set_leverage(leverage, symbol)
# Get current price
ticker = exchange.fetch_ticker(symbol)
current_price = ticker['last']
# Calculate sell quantity
amount = amount_usdt / current_price
# Create limit sell order (short)
order = exchange.create_limit_sell_order(
symbol=symbol,
amount=amount,
price=current_price * 1.001 # Slightly above market price
)
print(f"✅ Short position opened successfully")
print(f"Trading Pair: {symbol}")
print(f"Quantity: {amount:.6f}")
print(f"Price: ${current_price:.2f}")
print(f"Leverage: {leverage}x")
print(f"Order ID: {order['id']}")
return order
except Exception as e:
print(f"❌ Failed to open short position: {e}")
return None
3.1.3 Position Closing
def close_position(exchange, symbol):
"""
Close position
"""
try:
# Get current position
positions = exchange.fetch_positions([symbol])
position = positions[0]
if float(position['contracts']) == 0:
print("No position to close")
return None
position_size = abs(float(position['contracts']))
side = position['side']
# Determine close direction based on position side
if side == 'long':
# Close long position: sell
order = exchange.create_market_sell_order(symbol, position_size)
else:
# Close short position: buy
order = exchange.create_market_buy_order(symbol, position_size)
print(f"✅ Position closed successfully")
print(f"Close Direction: {side}")
print(f"Close Quantity: {position_size}")
print(f"Order ID: {order['id']}")
return order
except Exception as e:
print(f"❌ Failed to close position: {e}")
return None
3.2 Futures Stop Loss Settings
3.2.1 Take Profit Orders
def set_take_profit_order(exchange, symbol, side, amount, take_profit_price):
"""
Set take profit order
"""
try:
if side == 'long':
# Long position take profit: sell
order = exchange.create_order(
symbol=symbol,
type='limit',
side='sell',
amount=amount,
price=take_profit_price,
params={'reduceOnly': True}
)
else:
# Short position take profit: buy
order = exchange.create_order(
symbol=symbol,
type='limit',
side='buy',
amount=amount,
price=take_profit_price,
params={'reduceOnly': True}
)
print(f"✅ Take profit order set successfully")
print(f"Take Profit Price: ${take_profit_price}")
print(f"Order ID: {order['id']}")
return order
except Exception as e:
print(f"❌ Failed to set take profit: {e}")
return None
3.2.2 Stop Loss Orders
def set_stop_loss_order(exchange, symbol, side, amount, stop_loss_price):
"""
Set stop loss order
"""
try:
if side == 'long':
# Long position stop loss: sell
order = exchange.create_order(
symbol=symbol,
type='stop_market',
side='sell',
amount=amount,
params={'stopPrice': stop_loss_price, 'reduceOnly': True}
)
else:
# Short position stop loss: buy
order = exchange.create_order(
symbol=symbol,
type='stop_market',
side='buy',
amount=amount,
params={'stopPrice': stop_loss_price, 'reduceOnly': True}
)
print(f"✅ Stop loss order set successfully")
print(f"Stop Loss Price: ${stop_loss_price}")
print(f"Order ID: {order['id']}")
return order
except Exception as e:
print(f"❌ Failed to set stop loss: {e}")
return None
3.3 Position Monitoring
3.3.1 Real-time Position Monitoring
class PositionMonitor:
def __init__(self, exchange):
self.exchange = exchange
self.positions = {}
def update_positions(self):
"""
Update position information
"""
try:
positions = self.exchange.fetch_positions()
for pos in positions:
if float(pos['contracts']) != 0:
self.positions[pos['symbol']] = {
'side': pos['side'],
'size': float(pos['contracts']),
'entry_price': float(pos['entryPrice']),
'mark_price': float(pos['markPrice']),
'unrealized_pnl': float(pos['unrealizedPnl']),
'percentage': float(pos['percentage']),
'liquidation_price': float(pos['liquidationPrice'])
}
except Exception as e:
print(f"Failed to update positions: {e}")
def get_position_risk(self, symbol):
"""
Get position risk indicators
"""
if symbol not in self.positions:
return None
pos = self.positions[symbol]
entry_price = pos['entry_price']
mark_price = pos['mark_price']
liquidation_price = pos['liquidation_price']
# Calculate percentage distance to liquidation
if pos['side'] == 'long':
distance_to_liquidation = (mark_price - liquidation_price) / entry_price * 100
else:
distance_to_liquidation = (liquidation_price - mark_price) / entry_price * 100
risk_level = 'low'
if distance_to_liquidation < 5:
risk_level = 'critical'
elif distance_to_liquidation < 10:
risk_level = 'high'
elif distance_to_liquidation < 20:
risk_level = 'medium'
return {
'symbol': symbol,
'risk_level': risk_level,
'distance_to_liquidation': distance_to_liquidation,
'unrealized_pnl': pos['unrealized_pnl'],
'pnl_percentage': pos['percentage']
}
def print_position_summary(self):
"""
Print position summary
"""
print("\n=== Position Summary ===")
if not self.positions:
print("No positions")
return
for symbol, pos in self.positions.items():
risk = self.get_position_risk(symbol)
print(f"\nTrading Pair: {symbol}")
print(f"Side: {pos['side']}")
print(f"Position Size: {pos['size']}")
print(f"Entry Price: ${pos['entry_price']:.2f}")
print(f"Mark Price: ${pos['mark_price']:.2f}")
print(f"Unrealized PnL: ${pos['unrealized_pnl']:.2f} ({pos['percentage']:.2f}%)")
print(f"Risk Level: {risk['risk_level'].upper()}")
print(f"Distance to Liquidation: {risk['distance_to_liquidation']:.2f}%")
# Usage example
monitor = PositionMonitor(exchange)
monitor.update_positions()
monitor.print_position_summary()
3.3.2 Liquidation Risk Alert
class LiquidationAlert:
def __init__(self, exchange, alert_threshold=0.1):
self.exchange = exchange
self.alert_threshold = alert_threshold # 10% alert threshold
self.last_alert_time = {}
def check_liquidation_risk(self):
"""
Check liquidation risk
"""
try:
positions = self.exchange.fetch_positions()
for pos in positions:
if float(pos['contracts']) != 0:
symbol = pos['symbol']
current_price = float(pos['markPrice'])
liquidation_price = float(pos['liquidationPrice'])
entry_price = float(pos['entryPrice'])
# Calculate percentage distance to liquidation
if pos['side'] == 'long':
distance = (current_price - liquidation_price) / entry_price
else:
distance = (liquidation_price - current_price) / entry_price
# Check if alert needed
if distance < self.alert_threshold:
self.send_alert(symbol, pos, distance)
except Exception as e:
print(f"Failed to check liquidation risk: {e}")
def send_alert(self, symbol, position, distance):
"""
Send alert
"""
current_time = time.time()
# Avoid duplicate alerts (only alert once per pair within 5 minutes)
if (symbol in self.last_alert_time and
current_time - self.last_alert_time[symbol] < 300):
return
self.last_alert_time[symbol] = current_time
# Build alert message
alert_message = f"""
🚨 Liquidation Risk Alert!
Trading Pair: {symbol}
Side: {position['side']}
Position: {position['contracts']}
Distance to Liquidation: {distance:.2%}
Current Price: ${position['markPrice']}
Liquidation Price: ${position['liquidationPrice']}
Unrealized PnL: {position['unrealizedPnl']}
Please check position status immediately!
"""
print(alert_message)
# Here you can add Telegram or other notification methods
# send_telegram_alert(alert_message)
# Usage example
alert = LiquidationAlert(exchange, alert_threshold=0.1)
alert.check_liquidation_risk()
Part 4: Risk Management Strategies
4.1 Position Management
4.1.1 Kelly Formula Application
def calculate_kelly_position_size(win_rate, avg_win, avg_loss, account_balance):
"""
Calculate optimal position size using Kelly formula
"""
# Kelly formula: f = (bp - q) / b
# b = win odds, p = win rate, q = loss rate
b = avg_win / abs(avg_loss) # Win odds
p = win_rate # Win rate
q = 1 - p # Loss rate
# Calculate Kelly fraction
kelly_fraction = (b * p - q) / b
# Conservative adjustment (use only half of Kelly fraction)
conservative_fraction = kelly_fraction * 0.5
# Ensure fraction is within reasonable range
conservative_fraction = max(conservative_fraction, 0.01) # At least 1%
conservative_fraction = min(conservative_fraction, 0.25) # At most 25%
position_size = account_balance * conservative_fraction
return {
'kelly_fraction': kelly_fraction,
'recommended_fraction': conservative_fraction,
'position_size': position_size
}
# Usage example
win_rate = 0.55
avg_win = 150 # Average win of 150 USDT
avg_loss = 100 # Average loss of 100 USDT
account_balance = 1000
result = calculate_kelly_position_size(win_rate, avg_win, avg_loss, account_balance)
print(f"Kelly formula recommended position: ${result['position_size']:.2f} USDT")
print(f"Recommended position fraction: {result['recommended_fraction']:.2%}")
4.1.2 Risk Parity Strategy
def calculate_risk_parity_positions(volatilities, account_balance, target_risk=0.02):
"""
Risk parity position calculation
"""
# Calculate weights for each asset (inversely proportional to volatility)
inverse_vols = [1/vol for vol in volatilities]
total_inverse_vol = sum(inverse_vols)
weights = [inv_vol/total_inverse_vol for inv_vol in inverse_vols]
# Calculate position size for each asset
positions = []
for i, weight in enumerate(weights):
# Target risk 2%, calculate position size
position_size = (account_balance * weight * target_risk) / volatilities[i]
positions.append({
'asset': f'Asset_{i+1}',
'weight': weight,
'volatility': volatilities[i],
'position_size': position_size
})
return positions
# Usage example
volatilities = [0.03, 0.04, 0.05] # Volatilities for BTC, ETH, BNB
account_balance = 1000
positions = calculate_risk_parity_positions(volatilities, account_balance)
for pos in positions:
print(f"{pos['asset']}: Weight={pos['weight']:.2%}, Position=${pos['position_size']:.2f}")
4.2 Capital Management Strategies
4.2.1 Fixed Ratio Position Management
class FixedRatioPositionManager:
def __init__(self, initial_balance, risk_per_trade=0.02, max_positions=3):
self.initial_balance = initial_balance
self.current_balance = initial_balance
self.risk_per_trade = risk_per_trade
self.max_positions = max_positions
self.open_positions = {}
def calculate_position_size(self, stop_loss_pct, leverage=1):
"""
Calculate position size
"""
# Risk amount per trade
risk_amount = self.current_balance * self.risk_per_trade
# Position size considering leverage
position_size = risk_amount / (stop_loss_pct / leverage)
# Ensure not exceeding certain percentage of account balance
max_position = self.current_balance * 0.3 # Max 30% per position
position_size = min(position_size, max_position)
return position_size
def can_open_position(self, position_size):
"""
Check if new position can be opened
"""
# Check position count
if len(self.open_positions) >= self.max_positions:
return False, "Maximum positions reached"
# Check fund sufficiency
total_position_value = sum(pos['size'] for pos in self.open_positions.values())
if total_position_value + position_size > self.current_balance * 0.8:
return False, "Insufficient funds"
return True, "Can open position"
def add_position(self, symbol, position_size, entry_price, stop_loss):
"""
Add new position
"""
self.open_positions[symbol] = {
'size': position_size,
'entry_price': entry_price,
'stop_loss': stop_loss,
'entry_time': datetime.now()
}
def close_position(self, symbol, exit_price):
"""
Close position
"""
if symbol not in self.open_positions:
return None
position = self.open_positions[symbol]
pnl = (exit_price - position['entry_price']) / position['entry_price'] * position['size']
# Update account balance
self.current_balance += pnl
# Remove position
del self.open_positions[symbol]
return pnl
# Usage example
manager = FixedRatioPositionManager(initial_balance=1000, risk_per_trade=0.02)
position_size = manager.calculate_position_size(stop_loss_pct=0.05, leverage=3)
can_open, reason = manager.can_open_position(position_size)
print(f"Recommended position size: ${position_size:.2f}")
print(f"Can open position: {can_open}")
print(f"Reason: {reason}")
4.2.2 Dynamic Capital Management
class DynamicCapitalManager:
def __init__(self, initial_balance, max_drawdown=0.20):
self.initial_balance = initial_balance
self.current_balance = initial_balance
self.peak_balance = initial_balance
self.max_drawdown = max_drawdown
self.trade_history = []
def update_balance(self, pnl):
"""
Update account balance
"""
self.current_balance += pnl
self.peak_balance = max(self.peak_balance, self.current_balance)
self.trade_history.append({
'timestamp': datetime.now(),
'pnl': pnl,
'balance': self.current_balance
})
def calculate_dynamic_position_size(self, base_position_size):
"""
Dynamically adjust position size based on current drawdown
"""
# Calculate current drawdown
current_drawdown = (self.peak_balance - self.current_balance) / self.peak_balance
# Adjust position based on drawdown
if current_drawdown > self.max_drawdown * 0.8: # Drawdown over 80%
position_multiplier = 0.5 # Halve position
elif current_drawdown > self.max_drawdown * 0.5: # Drawdown over 50%
position_multiplier = 0.7 # Reduce position by 30%
elif current_drawdown < 0.05: # Drawdown less than 5%, near new high
position_multiplier = 1.2 # Increase position by 20%
else:
position_multiplier = 1.0 # Normal position
adjusted_position_size = base_position_size * position_multiplier
return adjusted_position_size, current_drawdown
def should_stop_trading(self):
"""
Check if trading should be stopped
"""
current_drawdown = (self.peak_balance - self.current_balance) / self.peak_balance
# Stop trading if drawdown exceeds maximum limit
if current_drawdown >= self.max_drawdown:
return True, f"Drawdown {current_drawdown:.1%} exceeds maximum limit {self.max_drawdown:.1%}"
# Check consecutive losses
recent_trades = self.trade_history[-10:] # Last 10 trades
if len(recent_trades) >= 5:
consecutive_losses = sum(1 for trade in recent_trades if trade['pnl'] < 0)
if consecutive_losses >= 5:
return True, "5 consecutive losses, recommend pausing trading"
return False, "Can continue trading"
# Usage example
manager = DynamicCapitalManager(initial_balance=1000, max_drawdown=0.20)
# Simulate some trades
trades = [50, -30, -80, 100, -50, -150, 80, 120, -40, 60]
for trade_pnl in trades:
manager.update_balance(trade_pnl)
should_stop, reason = manager.should_stop_trading()
if should_stop:
print(f"⚠️ {reason}")
break
# Calculate dynamic position
adjusted_size, drawdown = manager.calculate_dynamic_position_size(100)
print(f"Current drawdown: {drawdown:.1%}, Adjusted position: ${adjusted_size:.2f}")
Part 5: Practical Strategy Configuration
5.1 Conservative Futures Strategy
class ConservativeFuturesStrategy(IStrategy):
"""
Conservative futures strategy
"""
# Basic settings
leverage = 2 # 2x leverage
stoploss = -0.05 # 5% stop loss
timeframe = '1h'
# Trailing stop loss
trailing_stop = True
trailing_stop_positive = 0.02 # Start trailing after 2% profit
trailing_stop_positive_offset = 0.04 # 2% trailing distance
# Position management
position_size = 0.1 # 10% of capital
def leverage(self, pair: str, current_time: datetime, current_rate: float,
proposed_leverage: float, max_leverage: int, entry_tag: str, side: str,
**kwargs) -> float:
# Conservative strategy always uses 2x leverage
return min(2, max_leverage)
def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
proposed_stake: float, min_stake: float, max_stake: float,
leverage: float, entry_tag: str, side: str, **kwargs) -> float:
# Use maximum 10% of capital
available_balance = self.wallets.get_total_stake_amount()
custom_stake = available_balance * self.position_size
return min(custom_stake, max_stake)
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# Moving averages
dataframe['sma_fast'] = ta.SMA(dataframe, timeperiod=10)
dataframe['sma_slow'] = ta.SMA(dataframe, timeperiod=30)
# RSI
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
# MACD
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
return dataframe
def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(
(dataframe['sma_fast'] > dataframe['sma_slow']) & # Fast above slow
(dataframe['macd'] > dataframe['macdsignal']) & # MACD golden cross
(dataframe['rsi'] > 30) & (dataframe['rsi'] < 70) # RSI in reasonable range
),
['enter_long', 'enter_tag']
] = (1, 'conservative_long')
return dataframe
def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(
(dataframe['sma_fast'] < dataframe['sma_slow']) | # Fast breaks below slow
(dataframe['rsi'] > 80) # RSI overbought
),
['exit_long', 'exit_tag']
] = (1, 'conservative_exit')
return dataframe
5.2 Aggressive Futures Strategy
class AggressiveFuturesStrategy(IStrategy):
"""
Aggressive futures strategy
"""
# Basic settings
leverage = 5 # 5x leverage
stoploss = -0.08 # 8% stop loss
timeframe = '15m' # Short time frame
# Trailing stop loss
trailing_stop = True
trailing_stop_positive = 0.01 # Start trailing after 1% profit
trailing_stop_positive_offset = 0.02 # 1% trailing distance
# Position management
position_size = 0.2 # 20% of capital
def leverage(self, pair: str, current_time: datetime, current_rate: float,
proposed_leverage: float, max_leverage: int, entry_tag: str, side: str,
**kwargs) -> float:
# Adjust leverage based on market volatility
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
last_candle = dataframe.iloc[-1]
# Calculate ATR as volatility indicator
atr = last_candle.get('atr', current_rate * 0.02)
volatility = atr / current_rate
if volatility > 0.03: # High volatility
return min(3, max_leverage)
elif volatility < 0.01: # Low volatility
return min(8, max_leverage)
else: # Normal volatility
return min(5, max_leverage)
def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
proposed_stake: float, min_stake: float, max_stake: float,
leverage: float, entry_tag: str, side: str, **kwargs) -> float:
# Adjust position based on signal strength
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
last_candle = dataframe.iloc[-1]
# Calculate signal strength
rsi = last_candle.get('rsi', 50)
if rsi < 30: # Oversold, strong signal
position_multiplier = 1.5
elif rsi < 50: # Leaning weak, medium signal
position_multiplier = 1.0
else:
position_multiplier = 0.8 # Weak signal
available_balance = self.wallets.get_total_stake_amount()
custom_stake = available_balance * self.position_size * position_multiplier
return min(custom_stake, max_stake)
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# Technical indicators
dataframe['ema_fast'] = ta.EMA(dataframe, timeperiod=9)
dataframe['ema_slow'] = ta.EMA(dataframe, timeperiod=21)
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
dataframe['stoch_rsi_k'] = ta.STOCHRSI(dataframe)['fastk']
dataframe['stoch_rsi_d'] = ta.STOCHRSI(dataframe)['fastd']
# Volatility indicators
dataframe['atr'] = ta.ATR(dataframe, timeperiod=14)
return dataframe
def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# Aggressive long signals
dataframe.loc[
(
(dataframe['ema_fast'] > dataframe['ema_slow']) &
(dataframe['stoch_rsi_k'] < 20) & # StochRSI oversold
(dataframe['rsi'] < 35) # RSI oversold
),
['enter_long', 'enter_tag']
] = (1, 'aggressive_long')
# Aggressive short signals
dataframe.loc[
(
(dataframe['ema_fast'] < dataframe['ema_slow']) &
(dataframe['stoch_rsi_k'] > 80) & # StochRSI overbought
(dataframe['rsi'] > 65) # RSI overbought
),
['enter_short', 'enter_tag']
] = (1, 'aggressive_short')
return dataframe
def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# Quick take profit
dataframe.loc[
(
(dataframe['rsi'] > 70) | # RSI overbought
(dataframe['stoch_rsi_k'] > 80) # StochRSI overbought
),
['exit_long', 'exit_tag']
] = (1, 'quick_profit')
dataframe.loc[
(
(dataframe['rsi'] < 30) | # RSI oversold
(dataframe['stoch_rsi_k'] < 20) # StochRSI oversold
),
['exit_short', 'exit_tag']
] = (1, 'quick_profit')
return dataframe
📝 Practical Tasks
Task 1: Simulated Futures Trading
- Register a futures account on Binance testnet
- Transfer test funds
- Use API to open long/short positions
- Practice setting take profit and stop loss
- Observe position changes and PnL
Task 2: Leverage Risk Testing
- Conduct simulated trading with different leverage multipliers
- Record liquidation prices for each leverage
- Test the impact of market volatility on positions
- Summarize the relationship between leverage and risk
Task 3: Risk Management Exercise
- Set position management rules
- Implement liquidation risk alerts
- Test response strategies for different market conditions
- Optimize capital management parameters
📌 Key Points
Futures Trading Safety Principles
1. Leverage Control
✅ Beginners should not exceed 3x leverage
✅ Experienced traders should not exceed 5x leverage
✅ Never use leverage above 10x
✅ Adjust leverage based on market volatility
2. Position Management
✅ Single position should not exceed 20% of total capital
✅ Total positions should not exceed 80% of total capital
✅ Strictly set stop losses
✅ Use trailing take profit to protect profits
3. Risk Monitoring
✅ Real-time monitoring of liquidation risks
✅ Set price alerts
✅ Regularly check position status
✅ Establish emergency plans
Common Futures Trading Mistakes
| Mistake | Consequence | Correct Approach |
|---|---|---|
| Using excessive leverage | Easy liquidation | Control leverage at 3-5x |
| No stop loss | May lose all capital | Set strict stop losses |
| Full position trading | No buffer margin | Keep sufficient margin |
| Ignoring funding rates | Additional cost losses | Monitor funding rates |
| Adding to losing positions | Amplifying losses | Follow trends, cut losses timely |
Futures Trading Checklist
Pre-trade Checks:
□ Leverage multiplier set reasonably
□ Stop loss price set
□ Position size meets risk requirements
□ Sufficient margin
□ Understand funding rates
During-trade Monitoring:
□ Position PnL status
□ Distance to liquidation price
□ Major market volatility
□ Funding rate changes
□ Technical indicator signals
Post-trade Summary:
□ PnL analysis
□ Strategy effectiveness evaluation
□ Risk control review
□ Parameter optimization recommendations
🎯 Next Lesson Preview
Lesson 24.4: Advanced Leverage Trading Techniques
In the next lesson, we will learn:
- Funding rate arbitrage strategies
- Spot-futures arbitrage operations
- Long-short hedging strategies
- Advanced risk hedging techniques
After mastering basic futures trading operations, we will explore more advanced leverage trading strategies and arbitrage opportunities.
⚠️ Final Reminder: Futures trading carries extremely high risks. Please be sure to practice with small capital only after fully understanding the mechanisms and risks. Protecting capital is always the top priority!
Top comments (0)