DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

unbind in PyTorch

Buy Me a Coffee

*Memos:

unbind() can get the one or more 0D or more D splitted view tensors of zero or more elements by the removal of only one specified dimension from the 1D or more D tensor of zero or more elements as shown below:

*Memos:

  • unbind() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • The 2nd argument with torch or the 1st argument is dim(Optional-Default:0-Type:int).
  • The total number of the zero or more elements of one or more returned tensors doesn't change.
  • One or more returned tensors don't keep the dimension of the original tensor.
import torch

my_tensor = torch.tensor([0, 1, 2, 3])

torch.unbind(input=my_tensor)
my_tensor.unbind()
torch.unbind(input=my_tensor, dim=0)
torch.unbind(input=my_tensor, dim=-1)
# (tensor(0),
#  tensor(1),
#  tensor(2),
#  tensor(3))

my_tensor = torch.tensor([[0, 1, 2, 3],
                          [4, 5, 6, 7],
                          [8, 9, 10, 11]])
torch.unbind(input=my_tensor)
torch.unbind(input=my_tensor, dim=0)
torch.unbind(input=my_tensor, dim=-2)
# (tensor([0, 1, 2, 3]),
#  tensor([4, 5, 6, 7]),
#  tensor([8, 9, 10, 11]))

torch.unbind(input=my_tensor, dim=1)
torch.unbind(input=my_tensor, dim=-1)
# (tensor([0, 4, 8]),
#  tensor([1, 5, 9]),
#  tensor([2, 6, 10]),
#  tensor([3, 7, 11]))

my_tensor = torch.tensor([[[0, 1, 2, 3],
                           [4, 5, 6, 7],
                           [8, 9, 10, 11]]])
torch.unbind(input=my_tensor)
torch.unbind(input=my_tensor, dim=0)
torch.unbind(input=my_tensor, dim=-3)
# (tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]),)

torch.unbind(input=my_tensor, dim=1)
torch.unbind(input=my_tensor, dim=-2)
# (tensor([[0, 1, 2, 3]]),
#  tensor([[4, 5, 6, 7]]),
#  tensor([[8, 9, 10, 11]]))

torch.unbind(input=my_tensor, dim=2)
torch.unbind(input=my_tensor, dim=-1)
# (tensor([[0, 4, 8]]),
#  tensor([[1, 5, 9]]),
#  tensor([[2, 6, 10]]),
#  tensor([[3, 7, 11]]))

my_tensor = torch.tensor([[[0., 1., 2., 3.],
                           [4., 5., 6., 7.],
                           [8., 9., 10., 11.]]])
torch.unbind(input=my_tensor)
# (tensor([[0., 1., 2., 3.],
#          [4., 5., 6., 7.],
#          [8., 9., 10., 11.]]),)

my_tensor = torch.tensor([[[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j],
                           [4.+0.j, 5.+0.j, 6.+0.j, 7.+0.j],
                           [8.+0.j, 9.+0.j, 10.+0.j, 11.+0.j]]])
torch.unbind(input=my_tensor)
# (tensor([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j],
#          [4.+0.j, 5.+0.j, 6.+0.j, 7.+0.j],
#          [8.+0.j, 9.+0.j, 10.+0.j, 11.+0.j]]),)

my_tensor = torch.tensor([[[True, False, True, False],
                           [False, True, False, True],
                           [True, False, True, False]]])
torch.unbind(input=my_tensor)
# (tensor([[True, False, True, False],
#          [False, True, False, True],
#          [True, False, True, False]]),)
Enter fullscreen mode Exit fullscreen mode

Heroku

Built for developers, by developers.

Whether you're building a simple prototype or a business-critical product, Heroku's fully-managed platform gives you the simplest path to delivering apps quickly — using the tools and languages you already love!

Learn More

Top comments (0)

Image of DataStax

Langflow: Simplify AI Agent Building

Langflow is the easiest way to build and deploy AI-powered agents. Try it out for yourself and see why.

Get started for free

👋 Kindness is contagious

Engage with a wealth of insights in this thoughtful article, valued within the supportive DEV Community. Coders of every background are welcome to join in and add to our collective wisdom.

A sincere "thank you" often brightens someone’s day. Share your gratitude in the comments below!

On DEV, the act of sharing knowledge eases our journey and fortifies our community ties. Found value in this? A quick thank you to the author can make a significant impact.

Okay