DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

split in PyTorch

Buy Me a Coffee

*Memos:

split() can get the one or more 1D or more D splitted view tensors of zero or more elements from the 1D or more D tensor of zero or more elements as shown below:

*Memos:

  • split() can be used with torch or a tensor.
  • The 1st argument(tensor) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • The 2nd argument with torch or the 1st argument with a tensor is split_size_or_sections(Required-Type:int, tuple of int or list of int). *Don't use split_size_or_sections= with a tensor.
  • The 3rd argument with torch or the 2nd argument with a tensor is dim(Optional-Default:0-Type:int).
  • The total number of the zero or more elements of one or more returned tensors changes.
  • One or more returned tensors keep the dimension of the original tensor.
import torch

my_tensor = torch.tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]])

torch.split(tensor=my_tensor, split_size_or_sections=1)
my_tensor.split(1)
torch.split(tensor=my_tensor, split_size_or_sections=1, dim=0)
torch.split(tensor=my_tensor, split_size_or_sections=1, dim=-2)
# (tensor([[0, 1, 2, 3]]),
#  tensor([[4, 5, 6, 7]]),
#  tensor([[8, 9, 10, 11]]))

torch.split(tensor=my_tensor, split_size_or_sections=1, dim=1)
torch.split(tensor=my_tensor, split_size_or_sections=1, dim=-1)
# (tensor([[0], [4], [8]]),
#  tensor([[1], [5], [9]]),
#  tensor([[2], [6], [10]]),
#  tensor([[3], [7], [11]]))

torch.split(tensor=my_tensor, split_size_or_sections=2)
torch.split(tensor=my_tensor, split_size_or_sections=2, dim=0)
torch.split(tensor=my_tensor, split_size_or_sections=2, dim=-2)
# (tensor([[0, 1, 2, 3], [4, 5, 6, 7]]),
#  tensor([[8, 9, 10, 11]]))

torch.split(tensor=my_tensor, split_size_or_sections=2, dim=1)
torch.split(tensor=my_tensor, split_size_or_sections=2, dim=-1)
# (tensor([[0, 1], [4, 5], [8, 9]]),
#  tensor([[2, 3], [6, 7], [10, 11]]))

torch.split(tensor=my_tensor, split_size_or_sections=3)
torch.split(tensor=my_tensor, split_size_or_sections=3, dim=0)
torch.split(tensor=my_tensor, split_size_or_sections=3, dim=-2)
# (tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]),)

torch.split(tensor=my_tensor, split_size_or_sections=3, dim=1)
torch.split(tensor=my_tensor, split_size_or_sections=3, dim=-1)
# (tensor([[0, 1, 2], [4, 5, 6], [8, 9, 10]]),
#  tensor([[3], [7], [11]]))

torch.split(tensor=my_tensor, split_size_or_sections=(0, 3))
torch.split(tensor=my_tensor, split_size_or_sections=(0, 3), dim=0)
torch.split(tensor=my_tensor, split_size_or_sections=(0, 3), dim=-2)
# (tensor([], size=(0, 4), dtype=torch.int64),
#  tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]))

torch.split(tensor=my_tensor, split_size_or_sections=(1, 2))
torch.split(tensor=my_tensor, split_size_or_sections=(1, 2), dim=0)
torch.split(tensor=my_tensor, split_size_or_sections=(1, 2), dim=-2)
# (tensor([[0, 1, 2, 3]]),
#  tensor([[4, 5, 6, 7], [8, 9, 10, 11]]))

torch.split(tensor=my_tensor, split_size_or_sections=(2, 1))
torch.split(tensor=my_tensor, split_size_or_sections=(2, 1), dim=0)
torch.split(tensor=my_tensor, split_size_or_sections=(2, 1), dim=-2)
# (tensor([[0, 1, 2, 3], [4, 5, 6, 7]]),
#  tensor([[8, 9, 10, 11]]))

torch.split(tensor=my_tensor, split_size_or_sections=(3, 0))
torch.split(tensor=my_tensor, split_size_or_sections=(3, 0), dim=0)
# (tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]),
#  tensor([], size=(0, 4), dtype=torch.int64))

torch.split(tensor=my_tensor, split_size_or_sections=(1, 1, 1))
torch.split(tensor=my_tensor, split_size_or_sections=(1, 1, 1), dim=0)
torch.split(tensor=my_tensor, split_size_or_sections=(1, 1, 1), dim=-2)
# (tensor([[0, 1, 2, 3]]),
#  tensor([[4, 5, 6, 7]]), 
#  tensor([[ 8,  9, 10, 11]]))

my_tensor = torch.tensor([[0., 1., 2., 3.],
                          [4., 5., 6., 7.],
                          [8., 9., 10., 11.]])
torch.split(tensor=my_tensor, split_size_or_sections=1)
# (tensor([[0., 1., 2., 3.]]),
#  tensor([[4., 5., 6., 7.]]),
#  tensor([[8., 9., 10., 11.]]))

my_tensor = torch.tensor([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j],
                          [4.+0.j, 5.+0.j, 6.+0.j, 7.+0.j],
                          [8.+0.j, 9.+0.j, 10.+0.j, 11.+0.j]])
torch.split(tensor=my_tensor, split_size_or_sections=1)
# (tensor([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j]]),
#  tensor([[4.+0.j, 5.+0.j, 6.+0.j, 7.+0.j]]),
#  tensor([[8.+0.j, 9.+0.j, 10.+0.j, 11.+0.j]]))

my_tensor = torch.tensor([[True, False, True, False],
                          [False, True, False, True],
                          [True, False, True, False]])
torch.split(tensor=my_tensor, split_size_or_sections=1)
# (tensor([[True, False, True, False]]),
#  tensor([[False, True, False, True]]),
#  tensor([[True, False, True, False]]))
Enter fullscreen mode Exit fullscreen mode

Heroku

This site is built on Heroku

Join the ranks of developers at Salesforce, Airbase, DEV, and more who deploy their mission critical applications on Heroku. Sign up today and launch your first app!

Get Started

Top comments (0)

A Workflow Copilot. Tailored to You.

Pieces.app image

Our desktop app, with its intelligent copilot, streamlines coding by generating snippets, extracting code from screenshots, and accelerating problem-solving.

Read the docs