DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

split in PyTorch

Buy Me a Coffee

*Memos:

split() can get the one or more 1D or more D splitted view tensors of zero or more elements from the 1D or more D tensor of zero or more elements as shown below:

*Memos:

  • split() can be used with torch or a tensor.
  • The 1st argument(tensor) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • The 2nd argument with torch or the 1st argument with a tensor is split_size_or_sections(Required-Type:int, tuple of int or list of int). *Don't use split_size_or_sections= with a tensor.
  • The 3rd argument with torch or the 2nd argument with a tensor is dim(Optional-Default:0-Type:int).
  • The total number of the zero or more elements of one or more returned tensors changes.
  • One or more returned tensors keep the dimension of the original tensor.
import torch

my_tensor = torch.tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]])

torch.split(tensor=my_tensor, split_size_or_sections=1)
my_tensor.split(1)
torch.split(tensor=my_tensor, split_size_or_sections=1, dim=0)
torch.split(tensor=my_tensor, split_size_or_sections=1, dim=-2)
# (tensor([[0, 1, 2, 3]]),
#  tensor([[4, 5, 6, 7]]),
#  tensor([[8, 9, 10, 11]]))

torch.split(tensor=my_tensor, split_size_or_sections=1, dim=1)
torch.split(tensor=my_tensor, split_size_or_sections=1, dim=-1)
# (tensor([[0], [4], [8]]),
#  tensor([[1], [5], [9]]),
#  tensor([[2], [6], [10]]),
#  tensor([[3], [7], [11]]))

torch.split(tensor=my_tensor, split_size_or_sections=2)
torch.split(tensor=my_tensor, split_size_or_sections=2, dim=0)
torch.split(tensor=my_tensor, split_size_or_sections=2, dim=-2)
# (tensor([[0, 1, 2, 3], [4, 5, 6, 7]]),
#  tensor([[8, 9, 10, 11]]))

torch.split(tensor=my_tensor, split_size_or_sections=2, dim=1)
torch.split(tensor=my_tensor, split_size_or_sections=2, dim=-1)
# (tensor([[0, 1], [4, 5], [8, 9]]),
#  tensor([[2, 3], [6, 7], [10, 11]]))

torch.split(tensor=my_tensor, split_size_or_sections=3)
torch.split(tensor=my_tensor, split_size_or_sections=3, dim=0)
torch.split(tensor=my_tensor, split_size_or_sections=3, dim=-2)
# (tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]),)

torch.split(tensor=my_tensor, split_size_or_sections=3, dim=1)
torch.split(tensor=my_tensor, split_size_or_sections=3, dim=-1)
# (tensor([[0, 1, 2], [4, 5, 6], [8, 9, 10]]),
#  tensor([[3], [7], [11]]))

torch.split(tensor=my_tensor, split_size_or_sections=(0, 3))
torch.split(tensor=my_tensor, split_size_or_sections=(0, 3), dim=0)
torch.split(tensor=my_tensor, split_size_or_sections=(0, 3), dim=-2)
# (tensor([], size=(0, 4), dtype=torch.int64),
#  tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]))

torch.split(tensor=my_tensor, split_size_or_sections=(1, 2))
torch.split(tensor=my_tensor, split_size_or_sections=(1, 2), dim=0)
torch.split(tensor=my_tensor, split_size_or_sections=(1, 2), dim=-2)
# (tensor([[0, 1, 2, 3]]),
#  tensor([[4, 5, 6, 7], [8, 9, 10, 11]]))

torch.split(tensor=my_tensor, split_size_or_sections=(2, 1))
torch.split(tensor=my_tensor, split_size_or_sections=(2, 1), dim=0)
torch.split(tensor=my_tensor, split_size_or_sections=(2, 1), dim=-2)
# (tensor([[0, 1, 2, 3], [4, 5, 6, 7]]),
#  tensor([[8, 9, 10, 11]]))

torch.split(tensor=my_tensor, split_size_or_sections=(3, 0))
torch.split(tensor=my_tensor, split_size_or_sections=(3, 0), dim=0)
# (tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]),
#  tensor([], size=(0, 4), dtype=torch.int64))

torch.split(tensor=my_tensor, split_size_or_sections=(1, 1, 1))
torch.split(tensor=my_tensor, split_size_or_sections=(1, 1, 1), dim=0)
torch.split(tensor=my_tensor, split_size_or_sections=(1, 1, 1), dim=-2)
# (tensor([[0, 1, 2, 3]]),
#  tensor([[4, 5, 6, 7]]), 
#  tensor([[ 8,  9, 10, 11]]))

my_tensor = torch.tensor([[0., 1., 2., 3.],
                          [4., 5., 6., 7.],
                          [8., 9., 10., 11.]])
torch.split(tensor=my_tensor, split_size_or_sections=1)
# (tensor([[0., 1., 2., 3.]]),
#  tensor([[4., 5., 6., 7.]]),
#  tensor([[8., 9., 10., 11.]]))

my_tensor = torch.tensor([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j],
                          [4.+0.j, 5.+0.j, 6.+0.j, 7.+0.j],
                          [8.+0.j, 9.+0.j, 10.+0.j, 11.+0.j]])
torch.split(tensor=my_tensor, split_size_or_sections=1)
# (tensor([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j]]),
#  tensor([[4.+0.j, 5.+0.j, 6.+0.j, 7.+0.j]]),
#  tensor([[8.+0.j, 9.+0.j, 10.+0.j, 11.+0.j]]))

my_tensor = torch.tensor([[True, False, True, False],
                          [False, True, False, True],
                          [True, False, True, False]])
torch.split(tensor=my_tensor, split_size_or_sections=1)
# (tensor([[True, False, True, False]]),
#  tensor([[False, True, False, True]]),
#  tensor([[True, False, True, False]]))
Enter fullscreen mode Exit fullscreen mode

Sentry image

Hands-on debugging session: instrument, monitor, and fix

Join Lazar for a hands-on session where you’ll build it, break it, debug it, and fix it. You’ll set up Sentry, track errors, use Session Replay and Tracing, and leverage some good ol’ AI to find and fix issues fast.

RSVP here →

Top comments (0)

Billboard image

Create up to 10 Postgres Databases on Neon's free plan.

If you're starting a new project, Neon has got your databases covered. No credit cards. No trials. No getting in your way.

Try Neon for Free →

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay