DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

dsplit in PyTorch

Buy Me a Coffee

*Memos:

dsplit() can get the one or more 3D or more D depth-wisely splitted view tensors of zero or more elements from the 3D or more D tensor of zero or more elements as shown below:

*Memos:

  • dsplit() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • The 2nd argument with torch or the 1st argument with a tensor is sections(Required-Type:int).
  • The 2nd argument with torch or the 1st argument with a tensor is indices(Required-Type:tuple of int or list of int).
  • The total number of the zero or more elements of one or more returned tensors changes.
  • One or more returned tensors keep the dimension of the original tensor.
import torch

my_tensor = torch.tensor([[[0, 1, 2, 3],
                           [4, 5, 6, 7],
                           [8, 9, 10, 11]]])
torch.dsplit(input=my_tensor, sections=1)
my_tensor.dsplit(sections=1)
# (tensor([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]]),)

torch.dsplit(input=my_tensor, sections=2)
# (tensor([[[0, 1], [4, 5], [8, 9]]]),
#  tensor([[[2, 3], [6, 7], [10, 11]]]))

torch.dsplit(input=my_tensor, sections=4)
# (tensor([[[0], [4], [8]]]),
#  tensor([[[1], [5], [9]]]),
#  tensor([[[2], [6], [10]]]),
#  tensor([[[3], [7], [11]]]))

torch.dsplit(input=my_tensor, indices=(0,))
torch.dsplit(input=my_tensor, indices=(-4,))
# (tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]]))

torch.dsplit(input=my_tensor, indices=(1,))
torch.dsplit(input=my_tensor, indices=(-3,))
# (tensor([[[0], [4], [8]]]),
#  tensor([[[1, 2, 3], [5, 6, 7], [9, 10, 11]]]))

torch.dsplit(input=my_tensor, indices=(2,))
torch.dsplit(input=my_tensor, indices=(-2,))
# (tensor([[[0, 1], [4, 5], [8, 9]]]),
#  tensor([[[2, 3], [6, 7], [10, 11]]]))

torch.dsplit(input=my_tensor, indices=(3,))
torch.dsplit(input=my_tensor, indices=(-1,))
# (tensor([[[0, 1, 2], [4, 5, 6], [8, 9, 10]]]),
#  tensor([[[3], [7], [11]]]))

torch.dsplit(input=my_tensor, indices=(4,))
# (tensor([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64))

torch.dsplit(input=my_tensor, indices=(0, 0))
torch.dsplit(input=my_tensor, indices=(0, -4))
# (tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]]))

torch.dsplit(input=my_tensor, indices=(0, 1))
torch.dsplit(input=my_tensor, indices=(0, -3))
# (tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[0], [4], [8]]]),
#  tensor([[[1, 2, 3], [5, 6, 7], [9, 10, 11]]]))

torch.dsplit(input=my_tensor, indices=(0, 2))
torch.dsplit(input=my_tensor, indices=(0, -2))
# (tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[0, 1], [4, 5], [8, 9]]]),
#  tensor([[[2, 3], [6, 7], [10, 11]]]))

torch.dsplit(input=my_tensor, indices=(0, 3))
torch.dsplit(input=my_tensor, indices=(0, -1))
# (tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[0, 1, 2], [4, 5, 6], [8, 9, 10]]]),
#  tensor([[[3], [7], [11]]]))

torch.dsplit(input=my_tensor, indices=(0, 4))
# (tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64))

torch.dsplit(input=my_tensor, indices=(1, 0))
torch.dsplit(input=my_tensor, indices=(1, -4))
# (tensor([[[0], [4], [8]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]]))

torch.dsplit(input=my_tensor, indices=(1, 1))
torch.dsplit(input=my_tensor, indices=(1, -3))
# (tensor([[[0], [4], [8]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[1, 2, 3], [5, 6, 7], [9, 10, 11]]]))

torch.dsplit(input=my_tensor, indices=(1, 2))
torch.dsplit(input=my_tensor, indices=(1, -2))
# (tensor([[[0], [4], [8]]]),
#  tensor([[[1], [5], [9]]]),
#  tensor([[[2, 3], [6, 7], [10, 11]]]))

torch.dsplit(input=my_tensor, indices=(1, 3))
torch.dsplit(input=my_tensor, indices=(1, -1))
# (tensor([[[0], [4], [8]]]),
#  tensor([[[1, 2], [5, 6], [9, 10]]]),
#  tensor([[[3], [7], [11]]]))

torch.dsplit(input=my_tensor, indices=(1, 4))
# (tensor([[[0], [4], [8]]]),
#  tensor([[[1, 2, 3], [5, 6, 7], [9, 10, 11]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64))

torch.dsplit(input=my_tensor, indices=(2, 0))
torch.dsplit(input=my_tensor, indices=(2, -4))
# (tensor([[[0, 1], [4, 5], [8, 9]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]]))

torch.dsplit(input=my_tensor, indices=(2, 1))
torch.dsplit(input=my_tensor, indices=(2, -3))
# (tensor([[[0, 1], [4, 5], [8, 9]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[1, 2, 3], [5, 6, 7], [9, 10, 11]]]))

torch.dsplit(input=my_tensor, indices=(2, 2))
torch.dsplit(input=my_tensor, indices=(2, -2))
# (tensor([[[0, 1], [4, 5], [8, 9]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[2, 3], [6, 7], [10, 11]]]))

torch.dsplit(input=my_tensor, indices=(2, 3))
torch.dsplit(input=my_tensor, indices=(2, -1))
# (tensor([[[0, 1], [4, 5], [8, 9]]]),
#  tensor([[[2], [6], [10]]]),
#  tensor([[[3], [7], [11]]]))

torch.dsplit(input=my_tensor, indices=(2, 4))
# (tensor([[[0, 1], [4, 5], [8, 9]]]),
#  tensor([[[2, 3], [6, 7], [10, 11]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64))

torch.dsplit(input=my_tensor, indices=(3, 0))
torch.dsplit(input=my_tensor, indices=(3, -4))
# (tensor([[[0, 1, 2], [4, 5, 6], [8, 9, 10]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]]))

torch.dsplit(input=my_tensor, indices=(3, 1))
torch.dsplit(input=my_tensor, indices=(3, -3))
# (tensor([[[0, 1, 2], [4, 5, 6], [8, 9, 10]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[1, 2, 3], [5, 6, 7], [9, 10, 11]]]))

torch.dsplit(input=my_tensor, indices=(3, 2))
torch.dsplit(input=my_tensor, indices=(3, -2))
# (tensor([[[0, 1, 2], [4, 5, 6], [8, 9, 10]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[2, 3], [6, 7], [10, 11]]]))

torch.dsplit(input=my_tensor, indices=(3, 3))
torch.dsplit(input=my_tensor, indices=(3, -1))
# (tensor([[[0, 1, 2], [4, 5, 6], [8, 9, 10]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[3], [7], [11]]]))

torch.dsplit(input=my_tensor, indices=(3, 4))
# (tensor([[[0, 1, 2], [4, 5, 6], [8, 9, 10]]]),
#  tensor([[[3], [7], [11]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64))

torch.dsplit(input=my_tensor, indices=(4, 0))
torch.dsplit(input=my_tensor, indices=(4, -4))
# (tensor([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]]))

torch.dsplit(input=my_tensor, indices=(4, 1))
torch.dsplit(input=my_tensor, indices=(4, -3))
# (tensor([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[1, 2, 3], [5, 6, 7], [9, 10, 11]]]))

torch.dsplit(input=my_tensor, indices=(4, 2))
torch.dsplit(input=my_tensor, indices=(4, -2))
# (tensor([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[2, 3], [6, 7], [10, 11]]]))

torch.dsplit(input=my_tensor, indices=(4, 3))
torch.dsplit(input=my_tensor, indices=(4, -1))
# (tensor([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[3], [7], [11]]]))

torch.dsplit(input=my_tensor, indices=(4, 4))
# (tensor([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([], size=(1, 3, 0), dtype=torch.int64))

torch.dsplit(input=my_tensor, indices=(0, 0, 0))
torch.dsplit(input=my_tensor, indices=(0, 0, -4))
torch.dsplit(input=my_tensor, indices=(0, -4, 0))
torch.dsplit(input=my_tensor, indices=(0, -4, -4))
# (tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]]))
etc.

my_tensor = torch.tensor([[[0., 1., 2., 3.],
                           [4., 5., 6., 7.],
                           [8., 9., 10., 11.]]])
torch.dsplit(input=my_tensor, sections=1)
# (tensor([[[0., 1., 2., 3.],
#           [4., 5., 6., 7.],
#           [8., 9., 10., 11.]]]),)

my_tensor = torch.tensor([[[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j],
                           [4.+0.j, 5.+0.j, 6.+0.j, 7.+0.j],
                           [8.+0.j, 9.+0.j, 10.+0.j, 11.+0.j]]])
torch.dsplit(input=my_tensor, sections=1)
# (tensor([[[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j],
#           [4.+0.j, 5.+0.j, 6.+0.j, 7.+0.j],
#           [8.+0.j, 9.+0.j, 10.+0.j, 11.+0.j]]]),)

my_tensor = torch.tensor([[[True, False, True, False],
                           [False, True, False, True],
                           [True, False, True, False]]])
torch.dsplit(input=my_tensor, sections=1)
# (tensor([[[True, False, True, False],
#           [False, True, False, True],
#           [True, False, True, False]]]),)
Enter fullscreen mode Exit fullscreen mode

Do your career a big favor. Join DEV. (The website you're on right now)

It takes one minute, it's free, and is worth it for your career.

Get started

Community matters

Top comments (0)

A Workflow Copilot. Tailored to You.

Pieces.app image

Our desktop app, with its intelligent copilot, streamlines coding by generating snippets, extracting code from screenshots, and accelerating problem-solving.

Read the docs

👋 Kindness is contagious

Explore a sea of insights with this enlightening post, highly esteemed within the nurturing DEV Community. Coders of all stripes are invited to participate and contribute to our shared knowledge.

Expressing gratitude with a simple "thank you" can make a big impact. Leave your thanks in the comments!

On DEV, exchanging ideas smooths our way and strengthens our community bonds. Found this useful? A quick note of thanks to the author can mean a lot.

Okay