DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

dsplit in PyTorch

Buy Me a Coffee

*Memos:

dsplit() can get the one or more 3D or more D depth-wisely splitted view tensors of zero or more elements from the 3D or more D tensor of zero or more elements as shown below:

*Memos:

  • dsplit() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • The 2nd argument with torch or the 1st argument with a tensor is sections(Required-Type:int).
  • The 2nd argument with torch or the 1st argument with a tensor is indices(Required-Type:tuple of int or list of int).
  • The total number of the zero or more elements of one or more returned tensors changes.
  • One or more returned tensors keep the dimension of the original tensor.
import torch

my_tensor = torch.tensor([[[0, 1, 2, 3],
                           [4, 5, 6, 7],
                           [8, 9, 10, 11]]])
torch.dsplit(input=my_tensor, sections=1)
my_tensor.dsplit(sections=1)
# (tensor([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]]),)

torch.dsplit(input=my_tensor, sections=2)
# (tensor([[[0, 1], [4, 5], [8, 9]]]),
#  tensor([[[2, 3], [6, 7], [10, 11]]]))

torch.dsplit(input=my_tensor, sections=4)
# (tensor([[[0], [4], [8]]]),
#  tensor([[[1], [5], [9]]]),
#  tensor([[[2], [6], [10]]]),
#  tensor([[[3], [7], [11]]]))

torch.dsplit(input=my_tensor, indices=(0,))
torch.dsplit(input=my_tensor, indices=(-4,))
# (tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]]))

torch.dsplit(input=my_tensor, indices=(1,))
torch.dsplit(input=my_tensor, indices=(-3,))
# (tensor([[[0], [4], [8]]]),
#  tensor([[[1, 2, 3], [5, 6, 7], [9, 10, 11]]]))

torch.dsplit(input=my_tensor, indices=(2,))
torch.dsplit(input=my_tensor, indices=(-2,))
# (tensor([[[0, 1], [4, 5], [8, 9]]]),
#  tensor([[[2, 3], [6, 7], [10, 11]]]))

torch.dsplit(input=my_tensor, indices=(3,))
torch.dsplit(input=my_tensor, indices=(-1,))
# (tensor([[[0, 1, 2], [4, 5, 6], [8, 9, 10]]]),
#  tensor([[[3], [7], [11]]]))

torch.dsplit(input=my_tensor, indices=(4,))
# (tensor([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64))

torch.dsplit(input=my_tensor, indices=(0, 0))
torch.dsplit(input=my_tensor, indices=(0, -4))
# (tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]]))

torch.dsplit(input=my_tensor, indices=(0, 1))
torch.dsplit(input=my_tensor, indices=(0, -3))
# (tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[0], [4], [8]]]),
#  tensor([[[1, 2, 3], [5, 6, 7], [9, 10, 11]]]))

torch.dsplit(input=my_tensor, indices=(0, 2))
torch.dsplit(input=my_tensor, indices=(0, -2))
# (tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[0, 1], [4, 5], [8, 9]]]),
#  tensor([[[2, 3], [6, 7], [10, 11]]]))

torch.dsplit(input=my_tensor, indices=(0, 3))
torch.dsplit(input=my_tensor, indices=(0, -1))
# (tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[0, 1, 2], [4, 5, 6], [8, 9, 10]]]),
#  tensor([[[3], [7], [11]]]))

torch.dsplit(input=my_tensor, indices=(0, 4))
# (tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64))

torch.dsplit(input=my_tensor, indices=(1, 0))
torch.dsplit(input=my_tensor, indices=(1, -4))
# (tensor([[[0], [4], [8]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]]))

torch.dsplit(input=my_tensor, indices=(1, 1))
torch.dsplit(input=my_tensor, indices=(1, -3))
# (tensor([[[0], [4], [8]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[1, 2, 3], [5, 6, 7], [9, 10, 11]]]))

torch.dsplit(input=my_tensor, indices=(1, 2))
torch.dsplit(input=my_tensor, indices=(1, -2))
# (tensor([[[0], [4], [8]]]),
#  tensor([[[1], [5], [9]]]),
#  tensor([[[2, 3], [6, 7], [10, 11]]]))

torch.dsplit(input=my_tensor, indices=(1, 3))
torch.dsplit(input=my_tensor, indices=(1, -1))
# (tensor([[[0], [4], [8]]]),
#  tensor([[[1, 2], [5, 6], [9, 10]]]),
#  tensor([[[3], [7], [11]]]))

torch.dsplit(input=my_tensor, indices=(1, 4))
# (tensor([[[0], [4], [8]]]),
#  tensor([[[1, 2, 3], [5, 6, 7], [9, 10, 11]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64))

torch.dsplit(input=my_tensor, indices=(2, 0))
torch.dsplit(input=my_tensor, indices=(2, -4))
# (tensor([[[0, 1], [4, 5], [8, 9]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]]))

torch.dsplit(input=my_tensor, indices=(2, 1))
torch.dsplit(input=my_tensor, indices=(2, -3))
# (tensor([[[0, 1], [4, 5], [8, 9]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[1, 2, 3], [5, 6, 7], [9, 10, 11]]]))

torch.dsplit(input=my_tensor, indices=(2, 2))
torch.dsplit(input=my_tensor, indices=(2, -2))
# (tensor([[[0, 1], [4, 5], [8, 9]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[2, 3], [6, 7], [10, 11]]]))

torch.dsplit(input=my_tensor, indices=(2, 3))
torch.dsplit(input=my_tensor, indices=(2, -1))
# (tensor([[[0, 1], [4, 5], [8, 9]]]),
#  tensor([[[2], [6], [10]]]),
#  tensor([[[3], [7], [11]]]))

torch.dsplit(input=my_tensor, indices=(2, 4))
# (tensor([[[0, 1], [4, 5], [8, 9]]]),
#  tensor([[[2, 3], [6, 7], [10, 11]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64))

torch.dsplit(input=my_tensor, indices=(3, 0))
torch.dsplit(input=my_tensor, indices=(3, -4))
# (tensor([[[0, 1, 2], [4, 5, 6], [8, 9, 10]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]]))

torch.dsplit(input=my_tensor, indices=(3, 1))
torch.dsplit(input=my_tensor, indices=(3, -3))
# (tensor([[[0, 1, 2], [4, 5, 6], [8, 9, 10]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[1, 2, 3], [5, 6, 7], [9, 10, 11]]]))

torch.dsplit(input=my_tensor, indices=(3, 2))
torch.dsplit(input=my_tensor, indices=(3, -2))
# (tensor([[[0, 1, 2], [4, 5, 6], [8, 9, 10]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[2, 3], [6, 7], [10, 11]]]))

torch.dsplit(input=my_tensor, indices=(3, 3))
torch.dsplit(input=my_tensor, indices=(3, -1))
# (tensor([[[0, 1, 2], [4, 5, 6], [8, 9, 10]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[3], [7], [11]]]))

torch.dsplit(input=my_tensor, indices=(3, 4))
# (tensor([[[0, 1, 2], [4, 5, 6], [8, 9, 10]]]),
#  tensor([[[3], [7], [11]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64))

torch.dsplit(input=my_tensor, indices=(4, 0))
torch.dsplit(input=my_tensor, indices=(4, -4))
# (tensor([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]]))

torch.dsplit(input=my_tensor, indices=(4, 1))
torch.dsplit(input=my_tensor, indices=(4, -3))
# (tensor([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[1, 2, 3], [5, 6, 7], [9, 10, 11]]]))

torch.dsplit(input=my_tensor, indices=(4, 2))
torch.dsplit(input=my_tensor, indices=(4, -2))
# (tensor([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[2, 3], [6, 7], [10, 11]]]))

torch.dsplit(input=my_tensor, indices=(4, 3))
torch.dsplit(input=my_tensor, indices=(4, -1))
# (tensor([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[3], [7], [11]]]))

torch.dsplit(input=my_tensor, indices=(4, 4))
# (tensor([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]]),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([], size=(1, 3, 0), dtype=torch.int64))

torch.dsplit(input=my_tensor, indices=(0, 0, 0))
torch.dsplit(input=my_tensor, indices=(0, 0, -4))
torch.dsplit(input=my_tensor, indices=(0, -4, 0))
torch.dsplit(input=my_tensor, indices=(0, -4, -4))
# (tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([], size=(1, 3, 0), dtype=torch.int64),
#  tensor([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]]))
etc.

my_tensor = torch.tensor([[[0., 1., 2., 3.],
                           [4., 5., 6., 7.],
                           [8., 9., 10., 11.]]])
torch.dsplit(input=my_tensor, sections=1)
# (tensor([[[0., 1., 2., 3.],
#           [4., 5., 6., 7.],
#           [8., 9., 10., 11.]]]),)

my_tensor = torch.tensor([[[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j],
                           [4.+0.j, 5.+0.j, 6.+0.j, 7.+0.j],
                           [8.+0.j, 9.+0.j, 10.+0.j, 11.+0.j]]])
torch.dsplit(input=my_tensor, sections=1)
# (tensor([[[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j],
#           [4.+0.j, 5.+0.j, 6.+0.j, 7.+0.j],
#           [8.+0.j, 9.+0.j, 10.+0.j, 11.+0.j]]]),)

my_tensor = torch.tensor([[[True, False, True, False],
                           [False, True, False, True],
                           [True, False, True, False]]])
torch.dsplit(input=my_tensor, sections=1)
# (tensor([[[True, False, True, False],
#           [False, True, False, True],
#           [True, False, True, False]]]),)
Enter fullscreen mode Exit fullscreen mode

Postmark Image

Speedy emails, satisfied customers

Are delayed transactional emails costing you user satisfaction? Postmark delivers your emails almost instantly, keeping your customers happy and connected.

Sign up

Top comments (0)

Image of Timescale

Timescale – the developer's data platform for modern apps, built on PostgreSQL

Timescale Cloud is PostgreSQL optimized for speed, scale, and performance. Over 3 million IoT, AI, crypto, and dev tool apps are powered by Timescale. Try it free today! No credit card required.

Try free

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay