DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

hsplit in PyTorch

Buy Me a Coffee

*Memos:

hsplit() can get the one or more 1D or more D horizontally splitted view tensors of zero or more elements from the 1D or more D tensor of zero or more elements as shown below:

  • hsplit() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • The 2nd argument with torch or the 1st argument with a tensor is sections(Required-Type:int).
  • The 2nd argument with torch or the 1st argument with a tensor is indices(Required-Type:tuple of int or list of int).
  • The total number of the zero or more elements of one or more returned tensors changes.
  • One or more returned tensors keep the dimension of the original tensor.
import torch

my_tensor = torch.tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]])

torch.hsplit(input=my_tensor, sections=1)
my_tensor.hsplit(sections=1)
# (tensor([[0, 1, 2, 3],
#          [4, 5, 6, 7],
#          [8, 9, 10, 11]]),)

torch.hsplit(input=my_tensor, sections=2)
# (tensor([[0, 1], [4, 5], [8, 9]]),
#  tensor([[2, 3], [6, 7], [10, 11]]))

torch.hsplit(input=my_tensor, sections=4)
# (tensor([[0], [4], [8]]),
#  tensor([[1], [5], [9]]),
#  tensor([[2], [6], [10]]),
#  tensor([[3], [7], [11]]))

torch.hsplit(input=my_tensor, indices=(0,))
torch.hsplit(input=my_tensor, indices=(-4,))
# (tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]))

torch.hsplit(input=my_tensor, indices=(1,))
torch.hsplit(input=my_tensor, indices=(-3,))
# (tensor([[0], [4], [8]]),
#  tensor([[1, 2, 3], [5, 6, 7], [9, 10, 11]]))

torch.hsplit(input=my_tensor, indices=(2,))
torch.hsplit(input=my_tensor, indices=(-2,))
# (tensor([[0, 1], [4, 5], [8, 9]]),
#  tensor([[2, 3], [6, 7], [10, 11]]))

torch.hsplit(input=my_tensor, indices=(3,))
torch.hsplit(input=my_tensor, indices=(-1,))
# (tensor([[0, 1, 2], [4, 5, 6], [8, 9, 10]]),
#  tensor([[3], [7], [11]]))

torch.hsplit(input=my_tensor, indices=(4,))
# (tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]),
#  tensor([], size=(3, 0), dtype=torch.int64))

torch.hsplit(input=my_tensor, indices=(0, 0))
torch.hsplit(input=my_tensor, indices=(0, -4))
# (tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]))

torch.hsplit(input=my_tensor, indices=(0, 1))
torch.hsplit(input=my_tensor, indices=(0, -3))
# (tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[0], [4], [8]]),
#  tensor([[1, 2, 3], [5, 6, 7], [9, 10, 11]]))

torch.hsplit(input=my_tensor, indices=(0, 2))
torch.hsplit(input=my_tensor, indices=(0, -2))
# (tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[0, 1], [4, 5], [8, 9]]),
#  tensor([[2, 3], [6, 7], [10, 11]]))

torch.hsplit(input=my_tensor, indices=(0, 3))
torch.hsplit(input=my_tensor, indices=(0, -1))
# (tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[0, 1, 2], [4, 5, 6], [8, 9, 10]]),
#  tensor([[3], [7], [11]]))

torch.hsplit(input=my_tensor, indices=(0, 4))
# (tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]),
#  tensor([], size=(3, 0), dtype=torch.int64))

torch.hsplit(input=my_tensor, indices=(1, 0))
torch.hsplit(input=my_tensor, indices=(1, -4))
# (tensor([[0], [4], [8]]),
#  tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]))

torch.hsplit(input=my_tensor, indices=(1, 1))
torch.hsplit(input=my_tensor, indices=(1, -3))
# (tensor([[0], [4], [8]]),
#  tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[1, 2, 3], [5, 6, 7], [9, 10, 11]]))

torch.hsplit(input=my_tensor, indices=(1, 2))
torch.hsplit(input=my_tensor, indices=(1, -2))
# (tensor([[0], [4], [8]]),
#  tensor([[1], [5], [9]]),
#  tensor([[2, 3], [6, 7], [10, 11]]))

torch.hsplit(input=my_tensor, indices=(1, 3))
torch.hsplit(input=my_tensor, indices=(1, -1))
# (tensor([[0], [4], [8]]),
#  tensor([[1, 2], [5, 6], [9, 10]]),
#  tensor([[3], [7], [11]]))

torch.hsplit(input=my_tensor, indices=(1, 4))
# (tensor([[0], [4], [8]]),
#  tensor([[1, 2, 3], [5, 6, 7], [9, 10, 11]]),
#  tensor([], size=(3, 0), dtype=torch.int64))

torch.hsplit(input=my_tensor, indices=(2, 0))
torch.hsplit(input=my_tensor, indices=(2, -4))
# (tensor([[0, 1], [4, 5], [8, 9]]),
#  tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]))

torch.hsplit(input=my_tensor, indices=(2, 1))
torch.hsplit(input=my_tensor, indices=(2, -3))
# (tensor([[0, 1], [4, 5], [8, 9]]),
#  tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[1, 2, 3], [5, 6, 7], [9, 10, 11]]))

torch.hsplit(input=my_tensor, indices=(2, 2))
torch.hsplit(input=my_tensor, indices=(2, -2))
# (tensor([[0, 1], [4, 5], [8, 9]]),
#  tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[2, 3], [6, 7], [10, 11]]))

torch.hsplit(input=my_tensor, indices=(2, 3))
torch.hsplit(input=my_tensor, indices=(2, -1))
# (tensor([[0, 1], [4, 5], [8, 9]]),
#  tensor([[2], [6], [10]]),
#  tensor([[3], [7], [11]]))

torch.hsplit(input=my_tensor, indices=(2, 4))
# (tensor([[0, 1], [4, 5], [8, 9]]),
#  tensor([[2, 3], [6, 7], [10, 11]]),
#  tensor([], size=(3, 0), dtype=torch.int64))

torch.hsplit(input=my_tensor, indices=(3, 0))
torch.hsplit(input=my_tensor, indices=(3, -4))
# (tensor([[0, 1, 2], [4, 5, 6], [8, 9, 10]]),
#  tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]))

torch.hsplit(input=my_tensor, indices=(3, 1))
torch.hsplit(input=my_tensor, indices=(3, -3))
# (tensor([[0, 1, 2], [4, 5, 6], [8, 9, 10]]),
#  tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[1, 2, 3], [5, 6, 7], [9, 10, 11]]))

torch.hsplit(input=my_tensor, indices=(3, 2))
torch.hsplit(input=my_tensor, indices=(3, -2))
# (tensor([[0, 1, 2], [4, 5, 6], [8, 9, 10]]),
#  tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[2, 3], [6, 7], [10, 11]]))

torch.hsplit(input=my_tensor, indices=(3, 3))
torch.hsplit(input=my_tensor, indices=(3, -1))
# (tensor([[0, 1, 2], [4, 5, 6], [8, 9, 10]]),
#  tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[3], [7], [11]]))

torch.hsplit(input=my_tensor, indices=(3, 4))
# (tensor([[0, 1, 2], [4, 5, 6], [8, 9, 10]]),
#  tensor([[3], [7], [11]]),
#  tensor([], size=(3, 0), dtype=torch.int64))

torch.hsplit(input=my_tensor, indices=(4, 0))
torch.hsplit(input=my_tensor, indices=(4, -4))
# (tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]),
#  tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]))

torch.hsplit(input=my_tensor, indices=(4, 1))
torch.hsplit(input=my_tensor, indices=(4, -3))
# (tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]),
#  tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[1, 2, 3], [5, 6, 7], [9, 10, 11]]))

torch.hsplit(input=my_tensor, indices=(4, 2))
torch.hsplit(input=my_tensor, indices=(4, -2))
# (tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]),
#  tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[2, 3], [6, 7], [10, 11]]))

torch.hsplit(input=my_tensor, indices=(4, 3))
torch.hsplit(input=my_tensor, indices=(4, -1))
# (tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]),
#  tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[3], [7], [11]]))

torch.hsplit(input=my_tensor, indices=(4, 4))
# (tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]),
#  tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([], size=(3, 0), dtype=torch.int64))

torch.hsplit(input=my_tensor, indices=(-1, 0))
torch.hsplit(input=my_tensor, indices=(-1, -4))
# (tensor([[0, 1, 2], [4, 5, 6], [8, 9, 10]]),
#  tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]))

torch.hsplit(input=my_tensor, indices=(-1, 1))
torch.hsplit(input=my_tensor, indices=(-1, -3))
# (tensor([[0, 1, 2], [4, 5, 6], [8, 9, 10]]),
#  tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[1, 2, 3], [5, 6, 7], [9, 10, 11]]))

torch.hsplit(input=my_tensor, indices=(-1, 2))
torch.hsplit(input=my_tensor, indices=(-1, -2))
# (tensor([[0, 1, 2], [4, 5, 6], [8, 9, 10]]),
#  tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[2, 3], [6, 7], [10, 11]]))

torch.hsplit(input=my_tensor, indices=(-1, 3))
torch.hsplit(input=my_tensor, indices=(-1, -1))
# (tensor([[0, 1, 2], [4, 5, 6], [8, 9, 10]]),
#  tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[3], [7], [11]]))

torch.hsplit(input=my_tensor, indices=(-1, 4))
# (tensor([[0, 1,  2], [4, 5, 6], [8, 9, 10]]),
#  tensor([[3], [7], [11]]),
#  tensor([], size=(3, 0), dtype=torch.int64))

torch.hsplit(input=my_tensor, indices=(-1, -1))
# (tensor([[[0, 1, 2, 3], [4, 5, 6, 7]]]),
#  tensor([], size=(1, 0, 4), dtype=torch.int64),
#  tensor([[[8, 9, 10, 11]]]))

torch.hsplit(input=my_tensor, indices=(-1, -2))
# (tensor([[[0, 1, 2, 3], [4, 5, 6, 7]]]),
#  tensor([], size=(1, 0, 4), dtype=torch.int64),
#  tensor([[[4, 5, 6, 7], [8, 9, 10, 11]]]))

torch.hsplit(input=my_tensor, indices=(-2, 0))
torch.hsplit(input=my_tensor, indices=(-2, -4))
# (tensor([[0, 1], [4, 5], [8, 9]]),
#  tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]))

torch.hsplit(input=my_tensor, indices=(-2, 1))
torch.hsplit(input=my_tensor, indices=(-2, -3))
# (tensor([[0, 1], [4, 5], [8, 9]]),
#  tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[1, 2, 3], [5, 6, 7], [9, 10, 11]]))

torch.hsplit(input=my_tensor, indices=(-2, 2))
torch.hsplit(input=my_tensor, indices=(-2, -2))
# (tensor([[0, 1], [4, 5], [8, 9]]),
#  tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[2, 3], [6, 7], [10, 11]]))

torch.hsplit(input=my_tensor, indices=(-2, 3))
torch.hsplit(input=my_tensor, indices=(-2, -1))
# (tensor([[0, 1], [4, 5], [8, 9]]),
#  tensor([[2], [6], [10]]),
#  tensor([[3], [7], [11]]))

torch.hsplit(input=my_tensor, indices=(-2, 4))
# (tensor([[0, 1], [4, 5], [8, 9]]),
#  tensor([[2, 3], [6, 7], [10, 11]]),
#  tensor([], size=(3, 0), dtype=torch.int64))

torch.hsplit(input=my_tensor, indices=(-3, 0))
torch.hsplit(input=my_tensor, indices=(-3, -4))
# (tensor([[0], [4], [8]]),
#  tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]))

torch.hsplit(input=my_tensor, indices=(-3, 1))
torch.hsplit(input=my_tensor, indices=(-3, -3))
# (tensor([[0], [4], [8]]),
#  tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[1, 2, 3], [5, 6, 7], [9, 10, 11]]))

torch.hsplit(input=my_tensor, indices=(-3, 2))
torch.hsplit(input=my_tensor, indices=(-3, -2))
# (tensor([[0], [4], [8]]),
#  tensor([[1], [5], [9]]),
#  tensor([[2, 3], [6, 7], [10, 11]]))

torch.hsplit(input=my_tensor, indices=(-3, 3))
torch.hsplit(input=my_tensor, indices=(-3, -1))
# (tensor([[0], [4], [8]]),
#  tensor([[1, 2], [5, 6], [9, 10]]),
#  tensor([[3], [7], [11]]))

torch.hsplit(input=my_tensor, indices=(-3, 4))
# (tensor([[0], [4], [8]]),
#  tensor([[1, 2, 3], [5, 6, 7], [9, 10, 11]]),
#  tensor([], size=(3, 0), dtype=torch.int64))

torch.hsplit(input=my_tensor, indices=(-4, 0))
torch.hsplit(input=my_tensor, indices=(-4, -4))
# (tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]))

torch.hsplit(input=my_tensor, indices=(-4, 1))
torch.hsplit(input=my_tensor, indices=(-4, -3))
# (tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[0], [4], [8]]),
#  tensor([[1, 2, 3], [5, 6, 7], [9, 10, 11]]))

torch.hsplit(input=my_tensor, indices=(-4, 2))
torch.hsplit(input=my_tensor, indices=(-4, -2))
# (tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[0, 1], [4, 5], [8, 9]]),
#  tensor([[2, 3], [6, 7], [10, 11]]))

torch.hsplit(input=my_tensor, indices=(-4, 3))
torch.hsplit(input=my_tensor, indices=(-4, -1))
# (tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[0, 1, 2], [4, 5, 6], [8, 9, 10]]),
#  tensor([[3], [7], [11]]))

torch.hsplit(input=my_tensor, indices=(-4, 4))
# (tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]),
#  tensor([], size=(3, 0), dtype=torch.int64))

torch.hsplit(input=my_tensor, indices=(0, 0, 0))
torch.hsplit(input=my_tensor, indices=(0, 0, -4))
torch.hsplit(input=my_tensor, indices=(0, -4, 0))
torch.hsplit(input=my_tensor, indices=(0, -4, -4))
# (tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([], size=(3, 0), dtype=torch.int64),
#  tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]))
etc.

my_tensor = torch.tensor([[0., 1., 2., 3.],
                          [4., 5., 6., 7.],
                          [8., 9., 10., 11.]])
torch.hsplit(input=my_tensor, sections=1)
# (tensor([[0., 1., 2., 3.],
#          [4., 5., 6., 7.],
#          [8., 9., 10., 11.]]),)

my_tensor = torch.tensor([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j],
                          [4.+0.j, 5.+0.j, 6.+0.j, 7.+0.j],
                          [8.+0.j, 9.+0.j, 10.+0.j, 11.+0.j]])
torch.hsplit(input=my_tensor, sections=1)
# (tensor([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j],
#          [4.+0.j, 5.+0.j, 6.+0.j, 7.+0.j],
#          [8.+0.j, 9.+0.j, 10.+0.j, 11.+0.j]]),)

my_tensor = torch.tensor([[True, False, True, False],
                          [False, True, False, True],
                          [True, False, True, False]])
torch.hsplit(input=my_tensor, sections=1)
# (tensor([[True, False, True, False],
#          [False, True, False, True],
#          [True, False, True, False]]),)
Enter fullscreen mode Exit fullscreen mode

Image of Docusign

🛠️ Bring your solution into Docusign. Reach over 1.6M customers.

Docusign is now extensible. Overcome challenges with disconnected products and inaccessible data by bringing your solutions into Docusign and publishing to 1.6M customers in the App Center.

Learn more

Top comments (0)

Image of AssemblyAI

Automatic Speech Recognition with AssemblyAI

Experience near-human accuracy, low-latency performance, and advanced Speech AI capabilities with AssemblyAI's Speech-to-Text API. Sign up today and get $50 in API credit. No credit card required.

Try the API

👋 Kindness is contagious

Explore a sea of insights with this enlightening post, highly esteemed within the nurturing DEV Community. Coders of all stripes are invited to participate and contribute to our shared knowledge.

Expressing gratitude with a simple "thank you" can make a big impact. Leave your thanks in the comments!

On DEV, exchanging ideas smooths our way and strengthens our community bonds. Found this useful? A quick note of thanks to the author can mean a lot.

Okay