DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

chunk in PyTorch

Buy Me a Coffee

*Memos:

chunk() can get the one or more 1D or more D splitted view tensors of zero or more elements by specifying the number of chunks from the 1D or more D tensor of zero or more elements as shown below:

*Memos:

  • chunk() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • The 2nd argument with torch or the 1st argument with a tensor is chunks(Required-Type:int).
  • The 3rd argument with torch or the 2nd argument with a tensor is dim(Optional-Default:0-Type:int).
  • The total number of the zero or more elements of one or more returned tensors doesn't change.
  • One or more returned tensors keep the dimension of the original tensor.
import torch

my_tensor = torch.tensor([0, 1, 2, 3])

torch.chunk(input=my_tensor, chunks=1)
my_tensor.chunk(chunks=1)
torch.chunk(input=my_tensor, chunks=1, dim=0)
torch.chunk(input=my_tensor, chunks=1, dim=-1)
# (tensor([0, 1, 2, 3]),)

torch.chunk(input=my_tensor, chunks=2)
torch.chunk(input=my_tensor, chunks=2, dim=0)
torch.chunk(input=my_tensor, chunks=2, dim=-1)
torch.chunk(input=my_tensor, chunks=3)
torch.chunk(input=my_tensor, chunks=3, dim=0)
torch.chunk(input=my_tensor, chunks=3, dim=-1)
# (tensor([0, 1]),
#  tensor([2, 3]))

torch.chunk(input=my_tensor, chunks=4)
torch.chunk(input=my_tensor, chunks=4, dim=0)
torch.chunk(input=my_tensor, chunks=4, dim=-1)
# (tensor([0]), tensor([1]), tensor([2]), tensor([3]))

my_tensor = torch.tensor([[0, 1, 2, 3],
                          [4, 5, 6, 7],
                          [8, 9, 10, 11]])
torch.chunk(input=my_tensor, chunks=1)
torch.chunk(input=my_tensor, chunks=1, dim=0)
torch.chunk(input=my_tensor, chunks=1, dim=1)
torch.chunk(input=my_tensor, chunks=1, dim=-1)
torch.chunk(input=my_tensor, chunks=1, dim=-2)
# (tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]),)

torch.chunk(input=my_tensor, chunks=2)
torch.chunk(input=my_tensor, chunks=2, dim=0)
torch.chunk(input=my_tensor, chunks=2, dim=-2)
# (tensor([[0, 1, 2, 3], [4, 5, 6, 7]]),
#  tensor([[8, 9, 10, 11]]))

torch.chunk(input=my_tensor, chunks=2, dim=1)
torch.chunk(input=my_tensor, chunks=2, dim=-1)
torch.chunk(input=my_tensor, chunks=3, dim=1)
torch.chunk(input=my_tensor, chunks=3, dim=-1)
# (tensor([[0, 1], [4, 5], [8, 9]]),
#  tensor([[2, 3], [6, 7], [10, 11]]))

torch.chunk(input=my_tensor, chunks=3)
torch.chunk(input=my_tensor, chunks=3, dim=0)
torch.chunk(input=my_tensor, chunks=3, dim=-2)
torch.chunk(input=my_tensor, chunks=4)
torch.chunk(input=my_tensor, chunks=4, dim=0)
torch.chunk(input=my_tensor, chunks=4, dim=-2)
# (tensor([[0, 1, 2, 3]]),
#  tensor([[4, 5, 6, 7]]),
#  tensor([[8, 9, 10, 11]]))

torch.chunk(input=my_tensor, chunks=4, dim=1)
torch.chunk(input=my_tensor, chunks=4, dim=-1)
# (tensor([[0], [4], [8]]),
#  tensor([[1], [5], [9]]),
#  tensor([[2], [6], [10]]),
#  tensor([[3], [7], [11]]))

my_tensor = torch.tensor([[[0, 1, 2, 3],
                           [4, 5, 6, 7],
                           [8, 9, 10, 11]]])
torch.chunk(input=my_tensor, chunks=1)
torch.chunk(input=my_tensor, chunks=1, dim=0)
torch.chunk(input=my_tensor, chunks=1, dim=1)
torch.chunk(input=my_tensor, chunks=1, dim=2)
torch.chunk(input=my_tensor, chunks=1, dim=-1)
torch.chunk(input=my_tensor, chunks=1, dim=-2)
torch.chunk(input=my_tensor, chunks=1, dim=-3)
torch.chunk(input=my_tensor, chunks=2)
torch.chunk(input=my_tensor, chunks=2, dim=0)
torch.chunk(input=my_tensor, chunks=2, dim=-3)
torch.chunk(input=my_tensor, chunks=3)
torch.chunk(input=my_tensor, chunks=3, dim=0)
torch.chunk(input=my_tensor, chunks=3, dim=-3)
torch.chunk(input=my_tensor, chunks=4)
torch.chunk(input=my_tensor, chunks=4, dim=0)
torch.chunk(input=my_tensor, chunks=4, dim=-3)
# (tensor([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]]),)

torch.chunk(input=my_tensor, chunks=2, dim=1)
torch.chunk(input=my_tensor, chunks=2, dim=-2)
# (tensor([[[0, 1, 2, 3], [4, 5, 6, 7]]]),
#  tensor([[[8, 9, 10, 11]]]))

torch.chunk(input=my_tensor, chunks=2, dim=2)
torch.chunk(input=my_tensor, chunks=2, dim=-1)
torch.chunk(input=my_tensor, chunks=3, dim=2)
torch.chunk(input=my_tensor, chunks=3, dim=-1)
# (tensor([[[0, 1], [4, 5], [8, 9]]]),
#  tensor([[[2, 3], [6, 7], [10, 11]]]))

torch.chunk(input=my_tensor, chunks=3, dim=1)
torch.chunk(input=my_tensor, chunks=3, dim=-2)
torch.chunk(input=my_tensor, chunks=4, dim=1)
torch.chunk(input=my_tensor, chunks=4, dim=-2)
# (tensor([[[0, 1, 2, 3]]]),
#  tensor([[[4, 5, 6, 7]]]),
#  tensor([[[8, 9, 10, 11]]]))

torch.chunk(input=my_tensor, chunks=4, dim=2)
torch.chunk(input=my_tensor, chunks=4, dim=-1)
# (tensor([[[0], [4], [8]]]),
#  tensor([[[1], [5], [9]]]),
#  tensor([[[2], [6], [10]]]),
#  tensor([[[3], [7], [11]]]))

my_tensor = torch.tensor([[[0., 1., 2., 3.],
                           [4., 5., 6., 7.],
                           [8., 9., 10., 11.]]])
torch.chunk(input=my_tensor, chunks=1)
# (tensor([[[0., 1., 2., 3.],
#           [4., 5., 6., 7.],
#           [8., 9., 10., 11.]]]),)

my_tensor = torch.tensor([[[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j],
                           [4.+0.j, 5.+0.j, 6.+0.j, 7.+0.j],
                           [8.+0.j, 9.+0.j, 10.+0.j, 11.+0.j]]])
torch.chunk(input=my_tensor, chunks=1)
# (tensor([[[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j],
#           [4.+0.j, 5.+0.j, 6.+0.j, 7.+0.j],
#           [8.+0.j, 9.+0.j, 10.+0.j, 11.+0.j]]]),)

my_tensor = torch.tensor([[[True, False, True, False],
                           [False, True, False, True],
                           [True, False, True, False]]])
torch.chunk(input=my_tensor, chunks=1)
# (tensor([[[True, False, True, False],
#           [False, True, False, True],
#           [True, False, True, False]]]),)
Enter fullscreen mode Exit fullscreen mode

Image of Docusign

🛠️ Bring your solution into Docusign. Reach over 1.6M customers.

Docusign is now extensible. Overcome challenges with disconnected products and inaccessible data by bringing your solutions into Docusign and publishing to 1.6M customers in the App Center.

Learn more

Top comments (0)

Image of Docusign

🛠️ Bring your solution into Docusign. Reach over 1.6M customers.

Docusign is now extensible. Overcome challenges with disconnected products and inaccessible data by bringing your solutions into Docusign and publishing to 1.6M customers in the App Center.

Learn more