🔍 Explore the mesmerizing world of Ant Motion Tracking using Python and OpenCV! 🐜💻 Uncover the secrets of precise motion detection with our easy-to-follow tutorial. Subscribe for more coding insights and stay at the forefront of tech innovation! 🚀📈
Implementation code
Now, let's dive into the implementation. Ant Motion Tracking implementation using Python and the OpenCV library. This assumes that you have prior knowledge of setting up Python and installing the necessary libraries.:
CODE
import cv2
import numpy as np
Initialize video capture
cap = cv2.VideoCapture('ant.mov') # Replace with your video file
Create background subtractor
fgbg = cv2.createBackgroundSubtractorMOG2()
Create an empty list to store the ant positions
ant_positions = []
while True:
ret, frame = cap.read()
if not ret:
break
Apply background subtraction
fgmask = fgbg.apply(frame)
Remove noise using morphological operations
kernel = np.ones((5, 5), np.uint8)
fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel)
fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_CLOSE, kernel)
Find contours in the binary mask
contours, _ = cv2.findContours(fgmask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
Draw bounding boxes and circles around moving objects (ants)
for contour in contours:
if cv2.contourArea(contour) > 500: # Adjust the area threshold as needed
x, y, w, h = cv2.boundingRect(contour)
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
Calculate the centroid of the bounding box
cx, cy = x + w // 2, y + h // 2
Draw a circle at the centroid
cv2.circle(frame, (cx, cy), 10, (0, 0, 255), -1)
Save the ant position
ant_positions.append((cx, cy))
Display the original video and the processed video
cv2.imshow('Original Video', frame)
cv2.imshow('Foreground Mask', fgmask)
if cv2.waitKey(30) & 0xFF == 27: # Press 'Esc' to exit
break
cap.release()
cv2.destroyAllWindows()
Save the above script as a Python file (e.g., streamlit run app.py ) and run it on your os system . The script upload iamge from the machine, performs analyze images , and displays the live feedback.
Conclusion
In conclusion, this Python and OpenCV implementation showcases a simple yet effective Ant Motion Tracking system. By leveraging computer vision techniques, we've created a program that detects motion, making it a versatile tool for various applications. This project serves as a foundation for further exploration and customization, empowering developers to delve into the exciting realm of computer vision and real-time object tracking. Happy coding! 🚀🐜💻
Top comments (0)