loading...

Plug & Play Machine Learning Models in GoLang

michaeljtaylor0 profile image Michael Taylor ・3 min read

Problem

No one model works best for all possible situations. - No Free Lunch. DH Wolpert.

The Solution

Unit testable, dependency injectable, and backtestable models in under 200 lines of code.

Dependency Injection

Why? Dependency injection allows us to easily hot swap/inject both models and classifiers within our models in our machine learning pipeline.

Let's take a look at an end result example:

func main() {
 // SpamHamModel with a Naive Bayes Classifier plugged in
 spamNb := SpamHamModel{classifier: &NBClassifier{}}

 // Exact Same SpamHamModel with a SVM Classifier plugged in
 spamSVM := SpamHamModel{classifier: &SVMClassifier{}}

 // Exact Same SpamHamModel with a Neural Network Classifier plugged in
 spamNN := SpamHamModel{classifier: &NNClassifier{}}
}

Thank you for your time thus far... Let's expand on this.

Data structures and interfaces
// Step 1 - Define the Structure of Input Data
// You got mail!
type Email struct {
    Author string
    Body   string
    Flag   string //Spam/Ham
}

// Step 2 - Define a ML Classifier Contract
// Binary Classifier Interface - Examples SVM, NN, NB
type Classifier interface {
    Learn(emails []Email)
    Predict(email Email) string
}

// Step 3 - Create a Model with a "Plug & Play" Classifer Field
// You got mail! - Is it Spam or Ham? (Model Example)
type SpamHamModel struct {
    Classifier Classifier
}

func (model *SpamHamModel) Learn(emails []Email) {
    model.Classifier.Learn(emails)
}

func (model *SpamHamModel) Predict(email Email) string {
    return model.Classifier.Predict(email)
}
Naive Bayes Classifier
// Step 4 - Implement Classifier(s). Per the Contracts Terms.
// You got mail! - Is it Spam or Ham? (Model's Brain/Classifier)
type NBClassifer struct {
    classifier *bayesian.Classifier
    output     []bayesian.Class
}

func (c *NBClassifier) Learn(emails []models.Email) {
    c.output = distinctFlags(emails)
    c.classifier = bayesian.NewClassifierTfIdf(c.output...)
    for i := 0; i < len(emails); i++ {
        c.classifier.Learn(strings.Split(emails[i].Body, " "), bayesian.Class(emails[i].Flag))
    }
    c.classifier.ConvertTermsFreqToTfIdf()
}

func (c *NBClassifier) Predict(email models.Email) string {
    scores, _, _ := c.classifier.LogScores(strings.Split(email.Body, " "))
    results := models.Results{}
    for i := 0; i < len(scores); i++ {
        results = append(results, models.Result{ID: i, Score: scores[i]})
    }

    sort.Sort(sort.Reverse(results))

    flags := []string{}
    for i := 0; i < len(results); i++ {
        flags = append(flags, string(c.output[results[i].ID]))
    }
    return flags[0]
}

func distinctFlags(emails []models.Email) []bayesian.Class {
    result := []bayesian.Class{}
    j := 0
    for i := 0; i < len(emails); i++ {
        for j = 0; j < len(result); j++ {
            if emails[i].Flag == string(result[j]) {
                break
            }
        }
        if j == len(result) {
            result = append(result, bayesian.Class(emails[i].Flag))
        }
    }
    return result
}

Unit Testing

Using interfaces like this for crucial production code pieces allows for easier adherence to development approaches like TDD.

Example:

func CreateTrainingEmails() []models.Email {
    return []models.Email{
        models.Email{Body: "opportunity to earn extra money", Flag: "Spam"},
        models.Email{Body: "druggists blame classy gentry Aladdin", Flag: "Spam"},
        models.Email{Body: "please take a look at this report", Flag: "Ham"},
        models.Email{Body: "lunch at noon?", Flag: "Ham"},
    }
}

func CreateValidationEmails() []models.Email {
    return []models.Email{
        models.Email{Body: "opportunity to earn extra money", Flag: "Spam"},
        models.Email{Body: "druggists blame classy gentry Aladdin", Flag: "Spam"},
        models.Email{Body: "please take a look at this report", Flag: "Ham"},
        models.Email{Body: "lunch at noon?", Flag: "Ham"},
    }
}


func TestLearn(t *testing.T) {
    nbModel := models.SpamHamModel{Classifier: &NBClassifier{}}
    trainingSet := CreateTrainingEmails()
    validationSet := CreateValidationEmails()

    nbModel.Learn(trainingSet)

    for i := 0; i < len(validationSet); i++ {
        input := validationSet[i].Body
        expected := validationSet[i].Flag
        actual := nbModel.Predict(validationSet[i])
        Assert(t, expected, actual, input)
    }
}

func Assert(t *testing.T, expected string, actual string, input string) {
    if actual != expected {
        t.Error(
            "\nFOR:       ", input,
            "\nEXPECTED:  ", expected,
            "\nACTUAL:    ", actual,
        )
    }
}

Backtesting(Stay tuned for part two...)

The code is also available on github (if you want to test it locally): https://github.com/heupr/resources/tree/master/plugnplay

Posted on by:

Discussion

pic
Editor guide