Route Optimization Service - Handles path finding and optimization
Predictive Analytics Service - Delivery predictions and risk assessment
Fraud Detection Service - Real-time fraud scoring
NLP Communication Service - Message generation and sentiment analysis
Computer Vision Service - Package and document recognition
Voice Processing Service - Speech-to-text and voice commands
Service Structure:
# Example: Route Optimization Service (Python/FastAPI)
fromfastapiimportFastAPI,BackgroundTasksfrompydanticimportBaseModelimportasyncioimportredisimporttensorflowastfapp=FastAPI(title="Route Optimization AI Service")# Load pre-trained model
route_model=tf.keras.models.load_model('/models/route_optimizer_v2.h5')# Redis for caching
redis_client=redis.Redis(host='redis',port=6379,decode_responses=True)classRouteOptimizationRequest(BaseModel):order_id:strpickup_location:dictdelivery_location:dictconstraints:dictexternal_factors:dict@app.post("/optimize")asyncdefoptimize_route(request:RouteOptimizationRequest):# Check cache first
cache_key=f"route_opt:{request.order_id}"cached_result=redis_client.get(cache_key)ifcached_result:returnjson.loads(cached_result)# AI Model Processing
result=awaitprocess_route_optimization(request)# Cache result for 5 minutes
redis_client.setex(cache_key,300,json.dumps(result))returnresultasyncdefprocess_route_optimization(request):# Prepare input features
features=prepare_features(request)# Run AI model prediction
prediction=route_model.predict(features)# Post-process results
returnpost_process_route(prediction,request)
2. Database Optimization
PostgreSQL with AI-Specific Indexes:
-- Optimized indexes for AI queriesCREATEINDEXCONCURRENTLYidx_orders_ai_featuresONordersUSINGGIN((ai_features::jsonb));CREATEINDEXCONCURRENTLYidx_orders_geolocationONordersUSINGGIST(pickup_location,delivery_location);CREATEINDEXCONCURRENTLYidx_delivery_patternsONdelivery_history(delivery_date,client_id,success_status);-- Materialized view for AI analyticsCREATEMATERIALIZEDVIEWai_order_featuresASSELECTorder_id,extract_ai_features(order_data)asfeatures,delivery_success,delivery_time_actual,customer_ratingFROMordersoJOINdelivery_historydhONo.id=dh.order_idWHEREcreated_at>=NOW()-INTERVAL'90 days';-- Refresh every hourCREATEORREPLACEFUNCTIONrefresh_ai_features()RETURNSvoidAS$$BEGINREFRESHMATERIALIZEDVIEWCONCURRENTLYai_order_features;END;$$LANGUAGEplpgsql;
3. Caching Strategy
Redis Caching Layers:
// AI Service Cache ManagerclassAICacheManager{constructor(){this.redis=newRedis({host:process.env.REDIS_HOST,port:process.env.REDIS_PORT,retryDelayOnFailover:100,maxRetriesPerRequest:3})}// Route optimization cache (5 minutes)asynccacheRouteOptimization(orderId,result){constkey=`route_opt:${orderId}`awaitthis.redis.setex(key,300,JSON.stringify(result))}// Fraud detection cache (1 hour)asynccacheFraudResult(orderId,result){constkey=`fraud:${orderId}`awaitthis.redis.setex(key,3600,JSON.stringify(result))}// Predictive analytics cache (30 minutes)asynccachePredictions(orderId,predictions){constkey=`predictions:${orderId}`awaitthis.redis.setex(key,1800,JSON.stringify(predictions))}// AI insights cache (15 minutes)asynccacheInsights(orderId,insights){constkey=`insights:${orderId}`awaitthis.redis.setex(key,900,JSON.stringify(insights))}}
// services/aiGateway.jsconstexpress=require('express')const{createProxyMiddleware}=require('http-proxy-middleware')constrateLimit=require('express-rate-limit')constredis=require('redis')constapp=express()constredisClient=redis.createClient()// Rate limiting for AI endpointsconstaiRateLimit=rateLimit({windowMs:60*1000,// 1 minutemax:100,// limit each IP to 100 requests per windowMsmessage:'Too many AI requests, please try again later'})// Health check for AI servicesapp.get('/health',async (req,res)=>{constservices=['route-optimizer','fraud-detector','nlp-service']consthealth={}for (constserviceofservices){try{constresponse=awaitfetch(`http://${service}:8000/health`)health[service]=response.ok?'healthy':'unhealthy'}catch (error){health[service]='unreachable'}}res.json({status:'ok',services:health})})// Proxy to route optimization serviceapp.use('/api/v1/ai/route',aiRateLimit,createProxyMiddleware({target:'http://route-optimizer:8000',changeOrigin:true,pathRewrite:{'^/api/v1/ai/route':''},onError:(err,req,res)=>{console.error('Route service error:',err)res.status(503).json({error:'Route optimization service unavailable'})}}))// Proxy to fraud detection serviceapp.use('/api/v1/ai/security',aiRateLimit,createProxyMiddleware({target:'http://fraud-detector:8000',changeOrigin:true,pathRewrite:{'^/api/v1/ai/security':''}}))// Proxy to NLP serviceapp.use('/api/v1/ai/communications',aiRateLimit,createProxyMiddleware({target:'http://nlp-service:8000',changeOrigin:true,pathRewrite:{'^/api/v1/ai/communications':''}}))app.listen(3000,()=>{console.log('AI Gateway running on port 3000')})
2. Frontend Performance Optimization
Service Worker for AI Caching:
// public/ai-service-worker.jsconstAI_CACHE_NAME='ai-responses-v1'constAI_CACHE_DURATION=5*60*1000// 5 minutesself.addEventListener('fetch',event=>{consturl=newURL(event.request.url)// Cache AI responses for performanceif (url.pathname.includes('/api/v1/ai/')){event.respondWith(caches.open(AI_CACHE_NAME).then(cache=>{returncache.match(event.request).then(cachedResponse=>{if (cachedResponse){constcachedTime=cachedResponse.headers.get('cached-time')constnow=Date.now()// Check if cache is still validif (now-parseInt(cachedTime)<AI_CACHE_DURATION){returncachedResponse}}// Fetch new response and cache itreturnfetch(event.request).then(response=>{constresponseClone=response.clone()responseClone.headers.set('cached-time',Date.now().toString())cache.put(event.request,responseClone)returnresponse})})}))}})
Optimized AI Service Class:
// Enhanced aiService.js with performance optimizationsclassOptimizedAIServiceextendsAIService{constructor(){super()this.requestQueue=newMap()this.batchTimer=nullthis.batchRequests=[]}// Batch similar requests togetherasyncmakeOptimizedRequest(endpoint,options={}){// Check if similar request is already in queueconstrequestKey=`${endpoint}:${JSON.stringify(options.body)}`if (this.requestQueue.has(requestKey)){returnthis.requestQueue.get(requestKey)}// For prediction endpoints, batch requestsif (endpoint.includes('/predictions/')){returnthis.batchPredictionRequest(endpoint,options)}// For other requests, use normal flow with cachingconstrequestPromise=this.makeRequest(endpoint,options)this.requestQueue.set(requestKey,requestPromise)// Clear from queue after completionrequestPromise.finally(()=>{this.requestQueue.delete(requestKey)})returnrequestPromise}// Batch prediction requests for efficiencyasyncbatchPredictionRequest(endpoint,options){returnnewPromise((resolve,reject)=>{this.batchRequests.push({endpoint,options,resolve,reject})// Process batch after 100ms or when we have 10 requestsif (this.batchRequests.length>=10){this.processBatch()}elseif (!this.batchTimer){this.batchTimer=setTimeout(()=>this.processBatch(),100)}})}asyncprocessBatch(){if (this.batchTimer){clearTimeout(this.batchTimer)this.batchTimer=null}constbatch=[...this.batchRequests]this.batchRequests=[]try{constbatchRequest={requests:batch.map(req=>({endpoint:req.endpoint,data:JSON.parse(req.options.body)}))}constresponse=awaitthis.makeRequest('/batch/predictions',{body:JSON.stringify(batchRequest)})// Resolve individual requestsbatch.forEach((req,index)=>{req.resolve(response.results[index])})}catch (error){// Reject all requests in batchbatch.forEach(req=>req.reject(error))}}}exportconstoptimizedAIService=newOptimizedAIService()
// metrics/aiMetrics.jsconstpromClient=require('prom-client')// Create custom metricsconstaiRequestDuration=newpromClient.Histogram({name:'ai_request_duration_seconds',help:'Duration of AI requests in seconds',labelNames:['service','endpoint','status']})constaiModelAccuracy=newpromClient.Gauge({name:'ai_model_accuracy',help:'Current accuracy of AI models',labelNames:['model_name','version']})constaiCacheHitRate=newpromClient.Gauge({name:'ai_cache_hit_rate',help:'Cache hit rate for AI responses',labelNames:['cache_type']})// Middleware to track metricsfunctiontrackAIMetrics(req,res,next){conststartTime=Date.now()res.on('finish',()=>{constduration=(Date.now()-startTime)/1000aiRequestDuration.labels(req.service,req.route.path,res.statusCode).observe(duration)})next()}module.exports={aiRequestDuration,aiModelAccuracy,aiCacheHitRate,trackAIMetrics}
5. Security & Compliance
AI Service Authentication:
// middleware/aiAuth.jsconstjwt=require('jsonwebtoken')constrateLimit=require('express-rate-limit')// JWT verification for AI endpointsfunctionverifyAIToken(req,res,next){consttoken=req.headers.authorization?.split('')[1]if (!token){returnres.status(401).json({error:'No token provided'})}try{constdecoded=jwt.verify(token,process.env.AI_JWT_SECRET)req.user=decoded// Check AI service permissionsif (!decoded.permissions.includes('ai_access')){returnres.status(403).json({error:'Insufficient permissions'})}next()}catch (error){returnres.status(401).json({error:'Invalid token'})}}// Rate limiting specific to AI servicesconstaiRateLimit=rateLimit({windowMs:60*1000,// 1 minutemax:(req)=>{// Different limits based on user tierswitch (req.user?.tier){case'premium':return200case'standard':return100default:return50}},keyGenerator:(req)=>req.user?.id||req.ip})module.exports={verifyAIToken,aiRateLimit}
# Deploy Prometheus and Grafana
helm install prometheus prometheus-community/kube-prometheus-stack
# Import AI dashboard
kubectl apply -f monitoring/ai-dashboard.json
This architecture provides a scalable, high-performance AI service layer that can handle thousands of concurrent requests while maintaining sub-second response times for critical operations. The separation of concerns allows each AI service to be independently scaled and optimized based on demand patterns.
Top comments (0)
Subscribe
For further actions, you may consider blocking this person and/or reporting abuse
We're a place where coders share, stay up-to-date and grow their careers.
Top comments (0)