Problem:

//============================================

The set [1,2,3,...,n] contains a total of n! unique permutations.

By listing and labeling all of the permutations in order, we get the following sequence for n = 3:

1: "123"

2: "132"

3: "213"

4: "231"

5: "312"

6: "321"

Given n and k, return the kth permutation sequence.

Note:

Given n will be between 1 and 9 inclusive.

Given k will be between 1 and n! inclusive.

Example 1:

Input: n = 3, k = 3

Output: "213"

//============================================

This problem is really easy using C++ with STL library. Using next_permutation(string.begin(), string.end()) function, we can use a while loop as the solution below.

```
class Solution {
public:
string getPermutation(int n, int k) {
string s ="";
for(int i =1;i <=n; i++)
{
s+= to_string(i);
}
cout<<s<<endl;
while(k>1) //First time count from 1
{
k--;
next_permutation(s.begin(), s.end());
}
return s;
}
};
```

Other efficient method: (https://www.geeksforgeeks.org/find-the-k-th-permutation-sequence-of-first-n-natural-numbers/)

Explanation with simple example {1,2,3,4} and k =8

Step 1: First we find the first index using the formula

index = k / (n-1)! (with k = k-1)

so first index = 7/(4-1)! = 1 => first index = 1, we have {2,.,.}

Step 2: Then we find the second index with k now will be calculated to k1 = k%(n-1)! = 7%6 = 1 so next index = 1/(3-1)!=1/2! = 0 in the set {1,3,4} so 1 will be the next number. We have {2,1,.,.}

Step 3: Similarly, we calculate k2 = 1%(2!) = 1. next index = k2/(n-3)! = 1/1! = 1 in the set {3,4}. So 4 will be the next number. We have {2,1,4,.}

Finally we have last number remaining. So we just fill in and the final result is {2,1,4,3}

```
class Solution {
public:
int factorial(int n)
{
return (n==1 || n==0) ? 1: n * factorial(n - 1);
}
int findFirstNumIndex(int& k, int n)
{
if (n == 1) //last number remaining in set, so return the index 0
return 0;
n--;
int first_num_index;
int n_partial_fact = factorial(n);
// First position of the kth sequence will be at index = k / (n-1)!
first_num_index = k / n_partial_fact;
k = k % n_partial_fact;
return first_num_index;
}
string getPermutation(int n, int k) {
string ans = "";
set<int> s;
// Insert all natural number in set {1,2,3,4}
for (int i = 1; i <= n; i++)
s.insert(i);
set<int>::iterator itr;
// Mark the first position
itr = s.begin();
// K starts couting from 1
k = k - 1;
for (int i = 0; i < n; i++) {
int index
= findFirstNumIndex(k, n - i);
advance(itr, index); //get the value of number in the index.
ans += (to_string(*itr));
// remove current number from the set
s.erase(itr);
itr = s.begin();
}
return ans;
```

Please leave comment if I made any mistakes. Thanks a lot.

## Top comments (0)