What is a Data Lake?
A data lake is a centralized storage repository that holds vast amounts of raw data in its native format until needed. Unlike traditional databases that require structured data, data lakes can store:
- Structured data (CSV, databases)
- Semi-structured data (JSON, XML)
- Unstructured data (images, videos, logs)
Key Benefits
- Schema-on-Read: Apply structure when analyzing, not when storing
- Cost-Effective: Store large volumes at lower cost than traditional databases
- Flexibility: Support diverse data types and analytics workloads
- Scalability: Easily scale storage and compute independently
Why MinIO for Data Lakes?
MinIO is a high-performance, S3-compatible object storage system that serves as an excellent foundation for modern data lakes.
Key Advantages
- S3 Compatibility: Works with existing S3-based tools and applications
- High Performance: Optimized for speed and throughput
- Cost Effective: Lower total cost of ownership than cloud storage
- Easy Deployment: Simple setup on-premises or in the cloud
- Enterprise Security: Built-in encryption and access controls
Our Data Lake Architecture
┌─────────────────────────────────────────────────────────┐
│ Data Lake Zones │
├─────────────────────────────────────────────────────────┤
│ │
│ Raw Data Zone Processed Zone Analytics │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────┐ │
│ │Original CSV │ ETL │Cleaned Data │ Agg │ Reports │ │
│ │Files & Logs │ ────▶ │ (Parquet) │ ───▶ │ & KPIs │ │
│ │ │ │ │ │ │ │
│ └─────────────┘ └─────────────┘ └─────────┘ │
│ │
├─────────────────────────────────────────────────────────┤
│ MinIO Object Storage │
│ Bucket: uber-datalake │
└─────────────────────────────────────────────────────────┘
MinIO Setup
Configuration
# Run MinIO Server
export MINIO_ROOT_USER=adminminio
export MINIO_ROOT_PASSWORD=password
minio server ~/minio-data --console-address ":9001"
Access Points
- API Endpoint: http://localhost:9000
- Web Console: http://localhost:9001
- Credentials: adminminio / password
Data Lake Structure
Our uber-datalake
bucket follows a zone-based approach:
Zone Organization
uber-datalake/
├── raw/ # Landing zone for original data
│ └── ncr_ride_bookings.csv # Source CSV file (150K records)
├── processed/ # Cleaned and transformed data
│ └── cleaned_ncr_ride_bookings.parquet # ETL output
└── analytics/ # Business reports and aggregations
├── daily_kpis.parquet
└── driver_performance.parquet
MinIO Web Console Views
MinIO web console login interface
Main buckets view showing uber-datalake
File listing showing different data formats across zones
Data Pipeline Implementation
1. Raw Data Ingestion
- Click the bucket (uber-datalake)
- Click Upload
- Choose your raw CSV/Excel/Parquet file (e.g. uber_2024_raw.csv)
2. Data Processing & Transformation
Transform raw CSV data into optimized Parquet format:
# ETL pipeline
import pandas as pd
# Load raw CSV from MinIO
df_raw = pd.read_csv(
"s3://uber-datalake/raw/uber_2024_raw.csv",
storage_options={
"key": "adminminio",
"secret": "password",
"client_kwargs": {"endpoint_url": "http://localhost:9000"}
}
)
# Transformations
df_raw["datetime"] = pd.to_datetime(df_raw["Date"] + " " + df_raw["Time"])
df_raw["Payment Method"] = df_raw["Payment Method"].str.lower()
df_raw = df_raw.fillna({"Driver Ratings": 0, "Customer Rating": 0, "Payment Method": "N/A"})
# Save to processed zone
df_raw.to_parquet(
"s3://uber-datalake/processed/uber_2024_cleaned.parquet",
engine="pyarrow",
storage_options={
"key": "adminminio",
"secret": "password",
"client_kwargs": {"endpoint_url": "http://localhost:9000"}
},
index=False
)
3. Analytics Data Access
Our Streamlit dashboard reads directly from MinIO’s processed zone. It powers:
- KPIs (Total Rides, Completed Rides, Revenue, Avg Ratings)
- Heatmap of cancellations by day & hour
- Revenue breakdowns by payment method and vehicle type
- Customer vs Driver ratings distribution
import streamlit as st
import pandas as pd
# Read cleaned parquet from MinIO
df = pd.read_parquet(
"s3://uber-datalake/processed/uber_2024_cleaned.parquet",
storage_options={
"key": "adminminio",
"secret": "password",
'client_kwargs': {
'endpoint_url': 'http://localhost:9000'
}
}
)
st.title("Uber Rides Analytics Dashboard")
st.dataframe(df.head(20))
Data Formats & Optimization
Format Strategy
Zone | Format | Reason | Example |
---|---|---|---|
Raw | CSV | Preserve original format | ncr_ride_bookings.csv |
Processed | Parquet | Fast analytics queries | cleaned_data.parquet |
Analytics | Parquet | Compressed aggregations | daily_kpis.parquet |
Performance Benefits
CSV vs Parquet Comparison:
- Storage: Parquet ~60% smaller than CSV
- Query Speed: 10x faster for analytics workloads
- Compression: Built-in compression reduces costs
- Schema: Self-describing format with metadata
Data Governance
Access Control Zones
# Zone-based access patterns
ZONES = {
'raw': {
'access': ['data_engineers'],
'permissions': ['read', 'write', 'delete']
},
'processed': {
'access': ['analysts', 'dashboard_apps'],
'permissions': ['read']
},
'analytics': {
'access': ['business_users'],
'permissions': ['read']
}
}
Data Lifecycle
Zone | Retention | Purpose |
---|---|---|
Raw | Permanent | Source of truth, compliance |
Processed | 2 years | Analytics and reporting |
Analytics | 6 months | Dashboard consumption |
Integration Examples
Business Intelligence Tools
# Apache Superset connection
SUPERSET_CONFIG = {
'database_uri': 's3://uber-datalake/',
'extra': {
'engine_params': {
'connect_args': {
'endpoint_url': 'http://localhost:9000',
'aws_access_key_id': 'adminminio',
'aws_secret_access_key': 'password'
}
}
}
}
Analytics Workflows
# Jupyter notebook integration
import pandas as pd
# Direct data lake access
df = pd.read_parquet('s3://uber-datalake/processed/cleaned_ncr_ride_bookings.parquet')
# Perform analysis
revenue_analysis = df.groupby('Vehicle Type')['Booking Value'].agg(['sum', 'mean', 'count'])
# Save results back to analytics zone
revenue_analysis.to_parquet('s3://uber-datalake/analytics/vehicle_revenue_analysis.parquet')
Monitoring & Operations
Key Metrics Dashboard
Storage utilization and performance metrics
Health Monitoring
def check_datalake_health():
zones = ['raw', 'processed', 'analytics']
health_status = {}
for zone in zones:
objects = list(client.list_objects('uber-datalake', prefix=f'{zone}/'))
health_status[zone] = {
'object_count': len(objects),
'total_size_mb': sum(obj.size for obj in objects) / (1024*1024)
}
return health_status
Benefits Realized
Cost Savings
- 70% reduction in storage costs vs cloud providers
- No egress fees for data access
- Predictable pricing with on-premises deployment
Performance Gains
- Sub-second query response for dashboard
- Parallel processing capabilities for large datasets
- Direct S3 API compatibility with existing tools
Operational Simplicity
- Single interface for all data management
- Automated backup and replication
- Simple scaling by adding storage nodes
Best Practices Applied
1. Data Organization
- Clear zone separation for different data stages
- Consistent naming conventions across all objects
- Metadata documentation for data lineage
2. Security Implementation
- Role-based access control per zone
- Encryption at rest for sensitive data
- Network security with VPC deployment
3. Performance Optimization
- Parquet format for analytical workloads
- Appropriate file sizing (100MB-1GB per file)
- Partitioning by date for time-series data
Conclusion
Our MinIO-based data lake successfully demonstrates:
- Scalable Architecture: Supports 150K+ records with room for growth
- Cost Efficiency: Significant savings over cloud storage solutions
- Analytics Performance: Fast query response for business dashboards
- Operational Simplicity: Easy management through web interface
- Tool Integration: Seamless connectivity with analytics stack
This implementation provides a solid foundation for expanding data analytics capabilities while maintaining cost control and operational efficiency.
Key Takeaways:
- Data lakes enable flexible, cost-effective data storage
- MinIO provides enterprise-grade S3-compatible storage
- Zone-based organization improves data governance
- Direct integration with analytics tools accelerates insights
Implementation completed as part of NCR Ride Analytics project
Top comments (0)