DEV Community

Mcdowell Bowling
Mcdowell Bowling

Posted on

Nonlinear spectral blueshift in semiconductor to prevent built in amplifiers.

The seasonal dynamics of phoretic mites paralleled the seasonal dynamics of their hosts.Rheumatoid arthritis (RA) is a crucial inflammatory joint disease characterized by loss of self-tolerance and severe cartilage loss, autoimmune, and subchondral bone erosions. Cytokines are the key regulators of inflammatory responses. Homeostatic imbalances in pro- and anti-inflammatory cytokine activities can result in pathogenic inflammatory reactions. These imbalances could be initiated by environmental factors but the ability to define the threshold of environmental impact relies on the genetic background of the pro- and anti-inflammatory cytokines. To address this a case-control association study was carried out in 429 individuals from Malayalam speaking ethnic population from South India. Functionally relevant SNPs from IL-10, IL-6, IL-1β and IL-1RN were genotyped using PCR -RFLP and sequencing. Meta-analysis was performed for the associated variants of IL-10, IL-1β. Significant association with RA was observed with IL-1β rs1143634, rs1143627, IL-10 rs1800896, IL-6 rs1800796, rs1800797. The associated SNPs are likely to impact transcriptional activity of a gene. Meta-analysis with global populations also provide evidence that IL-10 and IL-1β could be a global marker for RA. The functional significance of associated risk variants of IL-1β and IL-6 indicate increased production of the pro-inflammatory cytokines while IL-10 risk allele suggest reduced production of anti- inflammatory cytokines. The study concludes that increased production of pro-inflammatory cytokines and reduced production of anti- inflammatory cytokines may influence the Th1/Th2 equilibrium resulting in a triggering of Th1 mediated inflammatory responses in development of RA.The clustered regularly interspaced short palindromic repeats (CRISPR) - Cas associated protein 9 (Cas9) system is very precise, efficient and relatively simple in creating genetic modifications at a predetermined locus in the genome. Genome editing with Cas9 ribonucleoproteins (RNPs) has reduced cytotoxic effects, off-target cleavage and increased on-target activity and the editing efficiencies. The unicellular alga Chlamydomonas reinhardtii is an emerging model for studying the production of high-value products for industrial applications. Development of C. reinhardtii as an industrial biotechnology host can be achieved more efficiently through genetic modifications using genome editing tools. We made an attempt to target MAA7 gene that encodes the tryptophan synthase β-Subunit using CRISPR-Cas9 RNPs to demonstrate knock-out and knock-in through homology-dependent repair template at the target site. In this study, we have demonstrated targeted gene knock-out in C. reinhardtii using programmed RNPs. Targeted editing of MAA7 gene was confirmed by sequencing the clones that were resistant to 5-Fluoroindole (5-FI). Non-homologous end joining (NHEJ) repair mechanism led to insertion, deletion, and/or base substitution in the Cas9 cleavage vicinity, encoding non-functional MAA7 protein product (knock-out), conferring resistance to 5-FI. Here, we report an efficient protocol for developing knock-out mutants in Chlamydomonas using CRISPR-Cas9 RNPs. The high potential efficiency of editing may also eliminate the need to select mutants by phenotype. These research findings would be more likely applied to other green algae for developing green cell factories to produce high-value molecules.Osteosarcoma is the most frequently occurring cancer in children as well as young adolescents and the metastatic forms worsen this condition to a further great extent. learn more The metastatic dissemination of cancer cells is often acquired through a process of epithelial-mesenchymal transition (EMT). Since, phytochemicals have attracted intense interest in recent years due to their diverse pharmacological effects, in the present study, we investigated if berberine, a naturally occurring isoquinoline quaternary alkaloid, could modulate the EMT in osteosarcoma cells. Our experimental studies showed that berberine reduced cell viability, colony formation, wound healing ability and migration of osteosarcoma cells. Also, berberine significantly reduced the expression of matrix metalloproteinase (MMP)-2, suggesting its inhibitory action on the matrix metalloproteinases that are required for cancer cell invasion. The significant reduction in the expression of vimentin, N-cadherin, fibronectin and increased expression of E-cadherin further suggested its role in the inhibition of EMT in osteosarcoma cells. The downregulation of H3K27me3, as well as the decreased expression of the histone methyl transferase enzyme EZH2, further substantiated the fact that the plant alkaloid can be used as an epigenetic modulator in the treatment of osteosarcoma. In conclusion, our findings suggest that berberine inhibits proliferation and migration of osteosarcoma cells and most importantly reverses EMT along with modulation of key epigenetic regulators.
Direct seeding is an efficient cultivation technique in rice. However, poor low temperature germinability (LTG) of modern rice cultivars limits its application. Identifying the genes associated with LTG and performing molecular breeding is the fundamental way to address this issue. However, few LTG QTLs have been fine mapped and cloned so far.

In the present study, the LTG evaluation of 375 rice accessions selected from the Rice Diversity Panel 2 showed that there were large LTG variations within the population, and the LTG of Indica group was significantly higher than that of Japonica and Aus groups (p< 0.01). In total, eleven QTLs for LTG were identified through genome-wide association study (GWAS). Among them, qLTG_sRDP2-3/qLTG_JAP-3, qLTG_AUS-3 and qLTG_sRDP2-12 are first reported in the present study. The QTL on chromosome 10, qLTG_sRDP2-10a had the largest contribution to LTG variations in 375 rice accessions, and was further validated using single segment substitution line (SSSL). The presence o_sRDP2-10a. Our results suggest that integrating GWAS and SSSL can facilitate identification of QTL for complex traits in rice. The identification of qLTG_sRDP2-10a and its candidate genes provide a promising source for gene cloning of LTG and molecular breeding for LTG in rice.
Among the 11 QTLs identified in this study, qLTG_sRDP2-10a could also be detected in other three studies using different germplasm under different cold environments. Its large effect and stable expression make qLTG_sRDP2-10a particularly valuable in rice breeding. The two genes, LOC_Os10g22484 and LOC_Os10g22520, were considered as the candidate genes underlying qLTG_sRDP2-10a. Our results suggest that integrating GWAS and SSSL can facilitate identification of QTL for complex traits in rice. The identification of qLTG_sRDP2-10a and its candidate genes provide a promising source for gene cloning of LTG and molecular breeding for LTG in rice.learn more

Top comments (0)