In the previous articles, we used backpropagation and plotted graphs to predict values correctly.
In all those examples, we used the Softplus activation function.
Now, let’s use the ReLU (Rectified Linear Unit) activation function, which is one of the most popular activation functions used in deep learning and convolutional neural networks.
ReLU is defined as:
ReLU(x) = max(0, x)
The output range is from 0 to infinity.
Assumed values
w1 = 1.70 b1 = -0.85
w2 = 12.6 b2 = 0.00
w3 = -40.8 b3 = -16
w4 = 2.70
We will use dosage values from 0 to 1.
Step 1: First linear transformation (w1, b1) + ReLU
If we plug in 0 for dosage:
0 × 1.70 + (-0.85) = -0.85
ReLU(-0.85) = 0
So the y-axis value is 0.
If we plug in 0.2:
0.2 × 1.70 + (-0.85) = -0.51
ReLU(-0.51) = 0
Still 0.
If we plug in 0.6:
0.6 × 1.70 + (-0.85) = 0.17
ReLU(0.17) = 0.17
Now the output becomes positive.
As we continue the dosage up to 1, we get a bent blue line.
Demo code
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 1, 100)
w1, b1 = 1.70, -0.85
z1 = w1 * x + b1
relu1 = np.maximum(0, z1)
plt.plot(x, relu1)
plt.xlabel("Dosage")
plt.ylabel("Activation")
plt.title("ReLU(w1 * x + b1)")
plt.show()
Step 2: Multiply the output by w3 = -40.8
Now we multiply the bent blue line by -40.8.
This flips the curve downward and scales it.
Demo code
w3 = -40.8
scaled_blue = relu1 * w3
plt.plot(x, scaled_blue)
plt.xlabel("Dosage")
plt.ylabel("Value")
plt.title("ReLU Output × w3")
plt.show()
Step 3: Bottom node (w2, b2)
Now we repeat the process for the bottom node using w2 and b2.
Since b2 = 0, this produces a straight orange line.
Demo code
w2, b2 = 12.6, 0.0
z2 = w2 * x + b2
plt.plot(x, z2, color="orange")
plt.xlabel("Dosage")
plt.ylabel("Value")
plt.title("w2 * x + b2")
plt.show()
Step 4: Multiply bottom node by w4 = 2.70
Now multiply this straight line by 2.70.
Demo code
w4 = 2.70
scaled_orange = z2 * w4
plt.plot(x, scaled_orange, color="orange")
plt.xlabel("Dosage")
plt.ylabel("Value")
plt.title("(w2 * x + b2) × w4")
plt.show()
Step 5: Add the two paths together
Now we add the bent blue line and the straight orange line.
This gives us a green wedge-shaped curve.
Demo code
combined = scaled_blue + scaled_orange
plt.plot(x, combined, color="green")
plt.xlabel("Dosage")
plt.ylabel("Value")
plt.title("Combined Signal")
plt.show()
Step 6: Add bias b3 = -16
Now we add the bias b3 = -16 to the combined signal.
Demo code
b3 = -16
combined_bias = combined + b3
plt.plot(x, combined_bias, color="green")
plt.xlabel("Dosage")
plt.ylabel("Value")
plt.title("Combined Signal + b3")
plt.show()
Step 7: Apply ReLU again
Now we apply ReLU over the green wedge.
This converts all negative values to 0 and keeps positive values unchanged.
Demo code
final_output = np.maximum(0, combined_bias)
plt.plot(x, final_output,color="green")
plt.xlabel("Dosage")
plt.ylabel("Activation")
plt.title("Final ReLU Output")
plt.show()
So this is our final result, where we plotted a curve using ReLU, making in more realistic for real-world situations.
We will explore more on Neural networks in the coming articles.
You can try the examples out in the Colab notebook.
Looking for an easier way to install tools, libraries, or entire repositories?
Try Installerpedia: a community-driven, structured installation platform that lets you install almost anything with minimal hassle and clear, reliable guidance.
Just run:
ipm install repo-name
… and you’re done! 🚀








Top comments (0)