DEV Community

Cover image for Difference between Bias and Variance in Machine Learning
Ruthvik Raja M.V
Ruthvik Raja M.V

Posted on • Edited on

Difference between Bias and Variance in Machine Learning

Consider Bias as error on training data and Variance as error on test Data for different training samples.

Under fitting model:
High Bias and Low Variance [If you try to fit a simple model such that most of the training data points won’t be satisfied].

Over fitting model:
Low Bias and High Variance [If you try to fit a model such that most of the training data points would be exactly satisfied].

So, it is very important to build a Perfect Model such that it satisfies most of the training data points and gives better results for the test data [Low Bias and Low Variance].

For detailed explanation, download the following notes on "Bias & Variance" Tradeoff:
https://github.com/ruthvikraja/Bias-Variance.git

Top comments (0)

Billboard image

Try REST API Generation for Snowflake

DevOps for Private APIs. Automate the building, securing, and documenting of internal/private REST APIs with built-in enterprise security on bare-metal, VMs, or containers.

  • Auto-generated live APIs mapped from Snowflake database schema
  • Interactive Swagger API documentation
  • Scripting engine to customize your API
  • Built-in role-based access control

Learn more

👋 Kindness is contagious

Dive into an ocean of knowledge with this thought-provoking post, revered deeply within the supportive DEV Community. Developers of all levels are welcome to join and enhance our collective intelligence.

Saying a simple "thank you" can brighten someone's day. Share your gratitude in the comments below!

On DEV, sharing ideas eases our path and fortifies our community connections. Found this helpful? Sending a quick thanks to the author can be profoundly valued.

Okay