在 WEB MVC的一些基础配置 中,ApiManager类是通过内部的InspectConfiguration类引用的。InspectConfiguration类使用了@Configuration和@ConditionalOnClass注解,表明当Spring上下文中存在RedisTemplate和InterceptorRegistry类时,会自动配置ApiManager。
1. 在InspectConfiguration中引用ApiManager
@Configuration
@ConditionalOnClass({RedisTemplate.class, InterceptorRegistry.class})
@EnableConfigurationProperties(ApiControlProperties.class)
static class InspectConfiguration {
// 配置ApiManager Bean,负责管理API统计数据
@Bean
public ApiManager handlerMethodRedisRegistry(
RedisTemplate<String, Object> redisTemplate,
RequestMappingHandlerMapping requestMappingHandlerMapping) {
return new ApiManager(redisTemplate, requestMappingHandlerMapping);
}
// 配置ApiControlInterceptor的自定义拦截器注册器,添加拦截器到注册器
@Bean
InterceptorRegistryCustomizer apiControlInterceptorCustomizer(ApiControlProperties apiControlProperties,
@Autowired(required = false) CacheControl cacheControl,
ApplicationContext applicationContext) {
return registry -> registry.addInterceptor(new ApiControlInterceptor(apiControlProperties, cacheControl, applicationContext))
.order(Ordered.HIGHEST_PRECEDENCE + 11) // 设置拦截器的优先级
.addPathPatterns("/**"); // 设置拦截的路径模式
}
}
解析:
1. @ConditionalOnClass:
- 这个注解表示InspectConfiguration配置类仅在RedisTemplate和InterceptorRegistry这两个类存在于类路径时才会生效。这意味着只有在应用程序使用Redis并且包含Spring Web MVC时,才会创建ApiManager的Bean。
2. handlerMethodRedisRegistry 方法:
- 该方法通过@Bean注解声明了一个ApiManager的Bean实例,它通过构造函数接收两个参数:
- RedisTemplate:用于与Redis进行交互。
- RequestMappingHandlerMapping:Spring MVC中的映射处理器,用于获取所有Handler方法信息。
- 在handlerMethodRedisRegistry方法中,ApiManager被创建并注册到Spring容器中,作为一个可注入的Bean。这个ApiManager实例负责处理与API管理相关的逻辑,包括未使用API的管理、请求的统计和推送。
3. apiControlInterceptorCustomizer 方法:
- 该方法配置了一个自定义的拦截器注册器,返回了一个InterceptorRegistryCustomizer接口的实现。
- 在这个实现中,ApiControlInterceptor拦截器被添加到了Spring的拦截器链中,优先级非常高(Ordered.HIGHEST_PRECEDENCE + 11),并且该拦截器应用于所有请求路径(/**)。
- ApiControlInterceptor会利用ApiManager来进行API请求的监控和统计。
ApiManager class
public class ApiManager {
private final BoundSetOperations<String, Object> unusedApis;
private final BoundHashOperations<String, String, Number> apiStatisticsHashOps;
private final RedisTemplate<String, Object> redisTemplate;
private volatile long lastSetExpireTime;
public ApiManager(RedisTemplate<String, Object> redisTemplate, RequestMappingHandlerMapping rmhm) {
this.redisTemplate = redisTemplate;
String name = Objects.requireNonNull(SpringContextHolder.getRedisPrefixByApplicationName());
this.unusedApis = redisTemplate.boundSetOps("entropy-reduction:unused-apis:" + name);
this.apiStatisticsHashOps = redisTemplate.boundHashOps(name + ":api-statistics");
HashOperations<String, String, String> hashOps = redisTemplate.opsForHash();
String registerKey = "entropy-reduction:unused-apis:register";
if (hashOps.get(registerKey, name) == null) {
/**
* 熵减工程之去除无用接口
*/
hashOps.put(registerKey, name, DateFormatUtils.format(new Date(), "yyyy-MM-dd HH:mm:ss"));
Object[] handlerMethods = rmhm.getHandlerMethods().values().stream().map(hm -> {
Method method = hm.getMethod();
return method.getDeclaringClass().getName() + "." + method.getName();
}).distinct().filter(item -> item.startsWith("com.example")).toArray();
unusedApis.add(handlerMethods);
}
}
/**
* 把请求存起来分析次数和权重
*/
public void requestToRedis(String deviceId, String host, String clientType) {
if (StringUtils.isBlank(deviceId)
|| StringUtils.isBlank(clientType)
|| StringUtils.isBlank(host)) {
return;
}
if(DeviceUtils.isApp(clientType)) {
String formattedDate = DateFormatUtils.format(new Date(), "yyyyMMdd");
BoundHashOperations<String, String, Number> statisticalWeightHashOps =
redisTemplate.boundHashOps("project-common-core:ApiManager:requestToRedis:requestTotal:" + formattedDate);
statisticalWeightHashOps.increment(clientType + " " + host, 1);
if (System.currentTimeMillis() - lastSetExpireTime > 3600_000) {
lastSetExpireTime = System.currentTimeMillis();
statisticalWeightHashOps.expire(7, TimeUnit.DAYS);
}
}
}
public void markAsUsed(Set<String> calledApis) {
unusedApis.remove(calledApis.toArray());
}
public Map<String, ApiStatistics> pushAndFetchApiStatistics(Map<String, ApiStatistics> input) {
for (Map.Entry<String, ApiStatistics> entry : input.entrySet()) {
this.apiStatisticsHashOps.increment(entry.getKey() + "-duration", entry.getValue().getTotalDuration());
this.apiStatisticsHashOps.increment(entry.getKey() + "-total", entry.getValue().getTotalCount());
this.apiStatisticsHashOps.increment(entry.getKey() + "-accept", entry.getValue().getTotalAcceptCount());
this.apiStatisticsHashOps.increment(entry.getKey() + "-reject", entry.getValue().getTotalRejectCount());
}
Map<String, Number> entries = this.apiStatisticsHashOps.entries();
if (entries != null) {
Map<String, ApiStatistics> output = new HashMap<>();
entries.forEach((key, value) -> {
String[] segments = key.split("-");
ApiStatistics apiCall = new ApiStatistics();
switch (segments[1]) {
case "duration":
apiCall.setTotalDuration(value);
break;
case "total":
apiCall.setTotalCount(value);
break;
case "accept":
apiCall.setTotalAcceptCount(value);
break;
case "reject":
apiCall.setTotalRejectCount(value);
break;
}
ApiStatistics absent = output.putIfAbsent(segments[0], apiCall);
if (absent != null) {
absent.incrementTotalCount(apiCall.getTotalCount());
absent.incrementDuration(apiCall.getTotalDuration());
absent.incrementReject(apiCall.getTotalRejectCount());
absent.incrementAccept(apiCall.getTotalAcceptCount());
}
});
StringBuilder sb = new StringBuilder();
output.forEach((key, value) -> {
sb.append(key).append("\n");
sb.append("\t-totalCount: ").append(value.getTotalCount()).append("\n");
sb.append("\t-totalDuration: ").append(value.getTotalDuration()).append("ms\n");
sb.append("\t-avgDuration: ").append(value.getAvgDuration()).append("ms\n");
sb.append("\t-totalReject: ").append(value.getTotalRejectCount()).append("\n");
sb.append("\t-totalAccept: ").append(value.getTotalAcceptCount()).append("\n\n");
sb.append("-----------------------------------------------------------------\n");
});
try {
FileUtils.writeStringToFile(new File("api-stat.txt"), sb.toString(), "UTF-8");
} catch (Exception ignore) {
}
return output;
} else {
return new HashMap<>(input);
}
}
}
1. 类成员变量
private final BoundSetOperations<String, Object> unusedApis;
private final BoundHashOperations<String, String, Number> apiStatisticsHashOps;
private final RedisTemplate<String, Object> redisTemplate;
private volatile long lastSetExpireTime;
- unusedApis: 使用BoundSetOperations接口操作Redis中的一个集合,用于存储未使用的API。
- apiStatisticsHashOps: 使用BoundHashOperations接口操作Redis中的哈希表,用于存储每个API的统计信息。
- redisTemplate: 用于与Redis交互的模板,提供操作Redis的各种方法。
- lastSetExpireTime: 存储上次设置Redis键过期时间的时间戳,用于控制过期时间的设置频率。
2. 构造方法
public ApiManager(RedisTemplate<String, Object> redisTemplate, RequestMappingHandlerMapping rmhm) {
this.redisTemplate = redisTemplate;
String name = Objects.requireNonNull(SpringContextHolder.getRedisPrefixByApplicationName());
this.unusedApis = redisTemplate.boundSetOps("entropy-reduction:unused-apis:" + name);
this.apiStatisticsHashOps = redisTemplate.boundHashOps(name + ":api-statistics");
HashOperations<String, String, String> hashOps = redisTemplate.opsForHash();
String registerKey = "entropy-reduction:unused-apis:register";
if (hashOps.get(registerKey, name) == null) {
/**
* 熵减工程之去除无用接口
*/
hashOps.put(registerKey, name, DateFormatUtils.format(new Date(), "yyyy-MM-dd HH:mm:ss"));
Object[] handlerMethods = rmhm.getHandlerMethods().values().stream().map(hm -> {
Method method = hm.getMethod();
return method.getDeclaringClass().getName() + "." + method.getName();
}).distinct().filter(item -> item.startsWith("com.example")).toArray();
unusedApis.add(handlerMethods);
}
}
- redisTemplate初始化:构造函数接收RedisTemplate和RequestMappingHandlerMapping作为参数,初始化与Redis相关的操作对象unusedApis和apiStatisticsHashOps。
- 初始化未使用的API集合:
- 通过RequestMappingHandlerMapping获取所有注册的Handler方法,并将其作为候选未使用的API。
- 如果Redis中不存在当前应用的未使用API的记录,则将其注册到Redis中,目的是进行API的熵减,即移除不再使用的API。
3. 请求信息存储方法
public void requestToRedis(String deviceId, String host, String clientType) {
if (StringUtils.isBlank(deviceId) || StringUtils.isBlank(clientType) || StringUtils.isBlank(host)) {
return;
}
if (DeviceUtils.isApp(clientType)) {
String formattedDate = DateFormatUtils.format(new Date(), "yyyyMMdd");
BoundHashOperations<String, String, Number> statisticalWeightHashOps =
redisTemplate.boundHashOps("project-common-core:ApiManager:requestToRedis:requestTotal:" + formattedDate);
statisticalWeightHashOps.increment(clientType + " " + host, 1);
if (System.currentTimeMillis() - lastSetExpireTime > 3600_000) {
lastSetExpireTime = System.currentTimeMillis();
statisticalWeightHashOps.expire(7, TimeUnit.DAYS);
}
}
}
功能解析:
- 请求参数的存储:
- 方法检查传入的deviceId、host和clientType是否为空,如果为空则直接返回。
- 如果clientType符合应用客户端的要求,则将请求数据存储到Redis中的哈希结构中,以统计该客户端的请求总数。
- 过期时间设置:
- 每隔一小时会设置Redis键的过期时间为7天,以确保统计数据不会无限增长。
4. 标记使用的API
public void markAsUsed(Set<String> calledApis) {
unusedApis.remove(calledApis.toArray());
}
- 移除已使用的API:
- 方法接收一个已调用的API集合calledApis,并将其从unusedApis集合中移除。这一步是为了更新Redis中未使用API的记录,避免将活跃的API误认为未使用。
5. 推送与获取API统计信息
public Map<String, ApiStatistics> pushAndFetchApiStatistics(Map<String, ApiStatistics> input) {
for (Map.Entry<String, ApiStatistics> entry : input.entrySet()) {
this.apiStatisticsHashOps.increment(entry.getKey() + "-duration", entry.getValue().getTotalDuration());
this.apiStatisticsHashOps.increment(entry.getKey() + "-total", entry.getValue().getTotalCount());
this.apiStatisticsHashOps.increment(entry.getKey() + "-accept", entry.getValue().getTotalAcceptCount());
this.apiStatisticsHashOps.increment(entry.getKey() + "-reject", entry.getValue().getTotalRejectCount());
}
Map<String, Number> entries = this.apiStatisticsHashOps.entries();
if (entries != null) {
Map<String, ApiStatistics> output = new HashMap<>();
entries.forEach((key, value) -> {
String[] segments = key.split("-");
ApiStatistics apiCall = new ApiStatistics();
switch (segments[1]) {
case "duration":
apiCall.setTotalDuration(value);
break;
case "total":
apiCall.setTotalCount(value);
break;
case "accept":
apiCall.setTotalAcceptCount(value);
break;
case "reject":
apiCall.setTotalRejectCount(value);
break;
}
ApiStatistics absent = output.putIfAbsent(segments[0], apiCall);
if (absent != null) {
absent.incrementTotalCount(apiCall.getTotalCount());
absent.incrementDuration(apiCall.getTotalDuration());
absent.incrementReject(apiCall.getTotalRejectCount());
absent.incrementAccept(apiCall.getTotalAcceptCount());
}
});
StringBuilder sb = new StringBuilder();
output.forEach((key, value) -> {
sb.append(key).append("\n");
sb.append("\t-totalCount: ").append(value.getTotalCount()).append("\n");
sb.append("\t-totalDuration: ").append(value.getTotalDuration()).append("ms\n");
sb.append("\t-avgDuration: ").append(value.getAvgDuration()).append("ms\n");
sb.append("\t-totalReject: ").append(value.getTotalRejectCount()).append("\n");
sb.append("\t-totalAccept: ").append(value.getTotalAcceptCount()).append("\n\n");
sb.append("-----------------------------------------------------------------\n");
});
try {
FileUtils.writeStringToFile(new File("api-stat.txt"), sb.toString(), "UTF-8");
} catch (Exception ignore) {
}
return output;
} else {
return new HashMap<>(input);
}
}
- 推送统计数据到Redis:
- 方法遍历输入的ApiStatistics对象,将每个API的统计数据(包括请求持续时间、总请求数、接受请求数、拒绝请求数)推送到Redis中的哈希结构中。
- 从Redis获取最新的API统计数据:
- 从Redis中获取统计数据后,构造一个新的ApiStatistics对象,用于存储从Redis中获取的API统计信息。
- 合并与写入文件:
- 将从Redis获取到的统计信息与本地的统计信息合并,然后将统计结果写入到api-stat.txt文件中,用于后续分析。
Top comments (0)