Forem

Usool
Usool

Posted on

A Comprehensive List of Mathematical Symbols and their title.

While I have transitioned completely into software development and computer science, I recall my background in Statistics and the wealth of mathematical jargon I encountered along the way. Below is a comprehensive collection of mathematical symbols, organized by category for your perusal:

1. Basic Arithmetic Symbols

  • + : Addition
  • : Subtraction
  • × : Multiplication
  • ÷ : Division
  • = : Equal to
  • : Not equal to
  • < : Less than
  • > : Greater than
  • : Less than or equal to
  • : Greater than or equal to
  • ± : Plus or minus
  • : Minus or plus

2. Algebra Symbols

  • x, y, z : Variables
  • a, b, c : Constants
  • ^ : Exponentiation (e.g., x^2 means x squared)
  • √x : Square root
  • ∛x : Cube root
  • n! : Factorial
  • |x| : Absolute value of x
  • : Proportional to
  • : Approximately equal to
  • : Summation (sigma)
  • : Product notation (pi)

3. Set Theory Symbols

  • {} : Set
  • : Element of
  • : Not an element of
  • : Subset of
  • : Proper subset of
  • : Not a subset of
  • : Union of sets
  • : Intersection of sets
  • : Empty set
  • : Set of natural numbers
  • : Set of integers
  • : Set of rational numbers
  • : Set of real numbers
  • : Set of complex numbers

4. Logic Symbols

  • : Logical AND
  • : Logical OR
  • ¬ : Logical NOT
  • : Implies
  • : If and only if (iff)
  • : For all (universal quantifier)
  • : There exists (existential quantifier)
  • : Therefore
  • : Because
  • : Contradiction or falsehood
  • : Tautology or truth

5. Calculus and Analysis Symbols

  • : Partial derivative
  • : Nabla (gradient)
  • d : Differential (as in dx)
  • : Integral
  • : Contour integral
  • : Infinity
  • lim : Limit
  • : Sum
  • : Product
  • Δx : Change in x
  • dx/dt : Derivative of x with respect to t
  • f'(x) : Derivative of f at x

6. Linear Algebra Symbols

  • : Vector
  • ⟨v, w⟩ : Inner product of vectors v and w
  • ||v|| : Norm (magnitude) of vector v
  • Aᵀ : Transpose of matrix A
  • A⁻¹ : Inverse of matrix A
  • det(A) : Determinant of matrix A
  • λ : Eigenvalue
  • v : Eigenvector
  • I : Identity matrix

7. Probability and Statistics Symbols

  • P(A) : Probability of event A
  • P(A | B) : Conditional probability of A given B
  • X ~ N(μ, σ²) : X follows a normal distribution with mean μ and variance σ²
  • E(X) : Expectation of X
  • Var(X) : Variance of X
  • σ : Standard deviation
  • ρ : Correlation coefficient
  • Σ : Sum of a set
  • : Product of probabilities
  • μ : Mean of a population
  • : Sample mean
  • s : Sample standard deviation

8. Number Theory Symbols

  • | : Divides (e.g., a | b means a divides b)
  • : Does not divide
  • gcd(a, b) : Greatest common divisor of a and b
  • lcm(a, b) : Least common multiple of a and b
  • p : Prime number
  • : Congruence (modulo)
  • φ(n) : Euler’s totient function

9. Complex Numbers Symbols

  • i : Imaginary unit (i² = −1)
  • : Conjugate of complex number z
  • Re(z) : Real part of z
  • Im(z) : Imaginary part of z
  • |z| : Modulus of z (absolute value)

10. Geometry Symbols

  • ∠ABC : Angle between points A, B, and C
  • △ABC : Triangle with vertices A, B, and C
  • : Perpendicular
  • : Parallel
  • π : Pi (≈ 3.14159)
  • r : Radius of a circle
  • d : Diameter of a circle
  • : Similar to (used in geometry)
  • : Congruent to (used in geometry)

11. Miscellaneous Symbols

  • : Identically equal to
  • : Direct sum
  • : Tensor product
  • ∇² : Laplace operator
  • : Implies
  • : If and only if (logical equivalence)
  • : Aleph (used in set theory for cardinality of infinite sets)

While these symbols might be confusing at first, they encompass most of the mathematical expressions you will encounter in textbooks, research papers, and various branches of mathematics, including calculus, algebra, set theory, and number theory. I plan to write another post discussing the use cases of these symbols, but I hope this overview will help familiarize newcomers with their names and applications in different mathematical contexts.

Top comments (0)