What is an Agentic Mesh?
An agentic mesh is a distributed system architecture where autonomous software agents collaborate to achieve complex tasks. These agents can be implemented in different programming languages, each chosen for its specific strengths, while working together seamlessly through standardized protocols.
Key Characteristics of Agentic Mesh
- Autonomy: Each agent operates independently with its own decision-making capabilities
- Polyglot Implementation: Supports multiple JVM languages (Java, Kotlin, Scala, Groovy)
- Protocol-Driven: Uses standardized communication protocols (A2A, MCP)
- Flexible Topology: Supports various interaction patterns
- Event-Driven: Reacts to system events and agent interactions
Agentic Mesh Patterns and Their JVM Implementations
1. 🔁 Pipeline Pattern (Sequential Chain)
In this pattern, agents process data in sequence, each handling a specific part of the workflow.
// Kotlin implementation using coroutines
class RawMaterialsAgent {
suspend fun processAndForward(material: Material): Material = coroutineScope {
val processed = process(material)
qualityInspectionAgent.inspect(processed)
}
}
// Scala implementation using Akka Streams
val pipeline = Source.single(material)
.via(rawMaterialsFlow)
.via(qualityInspectionFlow)
.via(productionPlanningFlow)
.runWith(Sink.foreach(println))
2. 🕸️ Decentralized Mesh (P2P)
Agents communicate directly with each other in a peer-to-peer fashion.
// Scala implementation using Akka Actors
class ProductionAgent extends Actor {
def receive = {
case StartProduction(item) =>
maintenanceAgent ! CheckMachinery
qualityAgent ! PrepareInspection(item)
}
}
// Kotlin implementation using Vert.x
class AssemblyAgent : AbstractVerticle() {
override fun start() {
vertx.eventBus().consumer<JsonObject>("assembly.status") { message ->
// Process message and communicate with other agents
}
}
}
3. 🎛 Blackboard Pattern
Agents share information through a common data space.
// Java implementation with MongoDB
@Component
public class BlackboardAgent {
@Autowired
private MongoTemplate mongoTemplate;
public void postUpdate(AgentContext context) {
mongoTemplate.save(context);
notifyObservers(context);
}
}
// Kotlin implementation with Redis
class SharedStateAgent {
suspend fun updateState(key: String, value: String) = withContext(Dispatchers.IO) {
redisTemplate.opsForValue().set(key, value)
eventBus.publish("state.changed", key)
}
}
4. 🧠 Hub-and-Spoke Pattern
A central agent orchestrates multiple specialized agents.
// Java implementation using Spring Boot
@Service
public class CentralPlannerAgent {
@Autowired
private List<SpecializedAgent> agents;
public void coordinateTask(Task task) {
agents.forEach(agent ->
CompletableFuture.runAsync(() -> agent.processTask(task))
);
}
}
// Groovy implementation for dynamic agent loading
class DynamicAgentLoader {
def loadAgents() {
def agentScripts = new GroovyScriptEngine('./agents')
agentScripts.run('AssemblyAgent.groovy', new Binding())
}
}
5. 📣 Event-Driven Pattern
Agents communicate through an event bus, reacting to system events.
// Kotlin implementation with Kafka
@KafkaListener(topics = ["material.stock.low"])
suspend fun onLowStock(event: StockEvent) = coroutineScope {
launch { orderNewMaterials(event.itemId) }
launch { notifyProductionPlanning(event) }
}
// Scala implementation with Akka EventBus
class ProductionEventBus extends EventBus {
override def publish(event: ProductionEvent): Unit = {
subscribers.foreach(_ ! event)
}
}
6. 🧩 Goal-Oriented Pattern (BDI)
Agents operate based on Beliefs, Desires, and Intentions.
// Java implementation using custom BDI framework
public class IntelligentAgent implements BDIAgent {
private BeliefSet beliefs = new BeliefSet();
private GoalSet goals = new GoalSet();
@Override
public void reason() {
goals.stream()
.filter(goal -> beliefs.supports(goal))
.forEach(this::pursue);
}
}
// Scala implementation for belief management
case class BeliefSet(beliefs: Map[String, Any]) {
def update(belief: String, value: Any): BeliefSet =
copy(beliefs = beliefs + (belief -> value))
}
Language-Specific Strengths in Agentic Mesh
-
Scala
- Complex data processing with Spark
- Actor-based concurrency with Akka
- Functional programming patterns
-
Kotlin
- Coroutines for async operations
- Clean DSL creation
- Modern Java interop
-
Groovy
- Dynamic script loading
- Runtime agent modification
- Quick prototyping
-
Java
- Enterprise integration
- Stable infrastructure
- Rich ecosystem support
Implementation Best Practices
- Protocol Standardization
public interface AgentProtocol {
CompletableFuture<Response> send(Message message);
void subscribe(String topic, Consumer<Message> handler);
}
- Cross-Language Communication
interface AgentBridge {
suspend fun <T> invoke(agentId: String, method: String, params: Map<String, Any>): T
}
- Unified Monitoring
trait AgentMetrics {
def recordOperation(name: String, duration: Long): Unit
def reportStatus(state: AgentState): Unit
}
Conclusion
Agentic mesh architectures provide a flexible, scalable approach to building complex distributed systems. By leveraging the strengths of different JVM languages and following established patterns, we can create robust, maintainable agent-based systems that effectively handle modern computing challenges.
The key is choosing the right pattern and language for each component while maintaining clean interfaces and protocols for seamless integration.
Top comments (0)