Problem statement
Given an array of integers nums sorted in ascending order,
find the starting and ending position of a given target value.
If target is not found in the array, return [-1, -1].
Problem statement taken from: https://leetcode.com/problems/find-first-and-last-position-of-element-in-sorted-array
Example 1:
Input: nums = [5, 7, 7, 8, 8, 10], target = 8
Output: [3, 4]
Example 2:
Input: nums = [5, 7, 7, 8, 8, 10], target = 6
Output: [-1, -1]
Example 3:
Input: nums = [], target = 0
Output: [-1, -1]
Constraints:
- 0 <= nums.length <= 10^5
- -10^9 <= nums[i] <= 10^9
- nums is a non-decreasing array.
- -10^9 <= target <= 10^9
Explanation
Brute force
The brute force approach will be to do a linear scan of the array.
We use two pointers leftIndex and rightIndex start with the first array
element.
When the first occurrence of the target element is found,
we assign that index to leftIndex variable.
We keep on iterating till the element is different from target.
We assign the current index - 1 value to rightIndex.
The C++ snippet of the above logic is as below:
int firstIndex = -1, lastIndex = -1;
for (int i = 0; i < n; i++) {
if (x != arr[i])
continue;
if (firstIndex == -1)
firstIndex = i;
lastIndex = i;
}
Binary search solution
An efficient solution to this problem is to use binary search.
Let's check the algorithm below:
- set i = 0, j = nums.size() - 1
- set leftIndex and rightIndex to -1
- loop while i <= j
- set mid = i + (j - i)/2
- if nums[mid] > target
- set j = mid - 1
- else if nums[mid] < target
- set i = mid + 1
- else
- leftIndex = mid
- set j = mid - 1
- set i = 0, j = nums.size() - 1
- loop while i <= j
- set mid = i + (j - i)/2
- if nums[mid] > target
- set j = mid - 1
- else if nums[mid] < target
- set i = mid + 1
- else
- rightIndex = mid
- set i = mid + 1
- return [leftIndex, rightIndex]
The time complexity of the above approach is O(log(N)) and,
space complexity is O(1).
C++ solution
class Solution {
public:
vector<int> searchRange(vector<int>& nums, int target) {
int i, j, mid;
i = 0;
j = nums.size() - 1;
int leftIndex = -1, rightIndex = -1;
while(i <= j){
mid = (i + j)/2;
if(nums[mid] > target){
j = mid - 1;
} else if (nums[mid] < target){
i = mid + 1;
} else {
leftIndex = mid;
j = mid - 1;
}
}
i = 0; j = nums.size() - 1;
while(i <= j){
mid = (i + j)/2;
if(nums[mid] > target){
j = mid - 1;
} else if (nums[mid] < target){
i = mid + 1;
} else {
rightIndex = mid;
i = mid + 1;
}
}
vector<int> ans;
ans.push_back(leftIndex);
ans.push_back(rightIndex);
return ans;
}
};
Golang solution
func searchRange(nums []int, target int) []int {
i, j := 0, len(nums) - 1
leftIndex, rightIndex := -1, -1
for i <= j {
mid := i + (j - i)/2
if nums[mid] > target {
j = mid - 1
} else if nums[mid] < target {
i = mid + 1
} else {
leftIndex = mid
j = mid - 1
}
}
i, j = 0, len(nums) - 1
for i <= j {
mid := i + (j - i)/2
if nums[mid] > target {
j = mid - 1
} else if nums[mid] < target {
i = mid + 1
} else {
rightIndex = mid
i = mid + 1
}
}
return []int{leftIndex, rightIndex}
}
Javascript solution
var searchRange = function(nums, target) {
let i = 0, j = nums.length - 1, mid;
let leftIndex = -1, rightIndex = -1;
while(i <= j){
mid = ~~(i + (j - i) / 2);
if(nums[mid] > target){
j = mid - 1;
} else if (nums[mid] < target){
i = mid + 1;
} else {
leftIndex = mid;
j = mid - 1;
}
}
i = 0;
j = nums.length - 1;
while(i <= j){
mid = ~~(i + (j - i) / 2);
if(nums[mid] > target){
j = mid - 1;
} else if (nums[mid] < target){
i = mid + 1;
} else {
rightIndex = mid;
i = mid + 1;
}
}
return [leftIndex, rightIndex];
};
Let's dry-run our algorithm to see how the solution works.
nums = [5, 7, 7, 8, 8, 10]
target = 8
Step 1: i = 0
j = nums.size() - 1
= 6 - 1
= 5
Step 2: leftIndex = -1
rightIndex = -1
Step 3: loop while i <= j
0 <= 5
mid = 2
nums[2] > 8
7 > 8
false
nums[2] < 8
7 < 8
true
i = mid + 1
= 3
Step 4: loop while i <= j
3 <= 5
mid = 4
nums[4] > 8
8 > 8
false
nums[4] < 8
8 < 8
false
nums[4] == 8
8 == 8
true
leftIndex = 4
j = 4 - 1
= 3
Step 5: loop while i <= j
3 <= 3
mid = 3
nums[3] > 8
8 > 8
false
nums[3] < 8
8 < 8
false
nums[4] == 8
8 == 8
true
leftIndex = 3
j = 3 - 1
= 2
Step 6: loop while i <= j
3 <= 2
false
Step 7: i = 0
j = nums.size() - 1
= 6 - 1
= 5
Step 8: loop while i <= j
0 <= 5
mid = 2
nums[2] > 8
7 > 8
false
nums[2] < 8
7 < 8
true
i = mid + 1
= 3
Step 9: loop while i <= j
3 <= 5
mid = 4
nums[4] > 8
8 > 8
false
nums[4] < 8
8 < 8
false
nums[4] == 8
8 == 8
true
rightIndex = 4
i = mid + 1
= 5
Step 10: loop while i <= j
5 <= 5
mid = 5
nums[5] > 8
10 > 8
true
j = mid - 1
= 5 - 1
= 4
Step 11: loop while i <= j
5 <= 4
false
Step 12: return [3, 4]
Top comments (1)
The C++ version could be modernized a bit. As an interviewer if I saw such a code I wouldn't be delighted to say the least.