DEV Community

Cover image for OpenCV image processing using Python
Rishi Saxena
Rishi Saxena

Posted on

OpenCV image processing using Python

What we need to get started with OpenCv...

We need to import few libraries given below and are available in Google Colab, independent installations may be required for other platforms.


1. Imports required



from scipy.spatial import distance as dist
from imutils import perspective
from imutils import contours
import numpy as np
import argparse
import imutils
import cv2
import matplotlib.pyplot as plt
from google.colab.patches import cv2_imshow


Enter fullscreen mode Exit fullscreen mode

2. Next we import an image and get its details



mg = cv2.imread(r'/content/parrot.jpg',cv2.IMREAD_UNCHANGED)
height = img.shape[0]  
width = img.shape[1]  
channels = img.shape[2]  
size1 = img.size
cv2_imshow(img)
print('Image Height       : ',height)  
print('Image Width        : ',width)  
print('Number of Channels : ',channels)  
print('Image Size  :', size1)


Enter fullscreen mode Exit fullscreen mode

Remember we are using Colab and it uses its own snippets.

3. First lets try to get distance between two pixels



pixel = img[100,100]
pixel1 = img[200,200]
pixel_diff= pixel1-pixel  
print("The difference between the two pixels is :",pixel_diff)  


Enter fullscreen mode Exit fullscreen mode

image


4. Next lets try Point processing in the spatial domain on Image, Image Negatives and Power-Law (Gamma) Transformation.

Negative



print("Part A : Negative of the image")
plt.imshow(img)
plt.show()
# negative transformed image
color = ('b', 'g', 'r')    
plt.show()


Enter fullscreen mode Exit fullscreen mode

image

Power-Law (Gamma) Transformation



print("Part B : Power Law ")
img = cv2.imread('/content/parrot.jpg', cv2.IMREAD_UNCHANGED)
gamma_two_point_two = np.array(255*(img/255)**2.2,dtype='uint8')

# Similarly, Apply Gamma=0.4 
gamma_point_four = np.array(255*(img/255)**0.4,dtype='uint8')

# Display the images in subplots
img3 = cv2.hconcat([gamma_two_point_two,gamma_point_four])
cv2_imshow(img3)


Enter fullscreen mode Exit fullscreen mode

We used hconcat for displaying results together.

image


5. lets try some Point processing in the spatial domain.

Contrast stretching



print("Part C : Gray-level slicing, Contrast stretching")
img = cv2.imread('/content/parrot.jpg', cv2.IMREAD_UNCHANGED)
def pixelVal(pix, r1, s1, r2, s2):
    if (0 <= pix and pix <= r1):
        return (s1 / r1)*pix
    elif (r1 < pix and pix <= r2):
        return ((s2 - s1)/(r2 - r1)) * (pix - r1) + s1
    else:
        return ((255 - s2)/(255 - r2)) * (pix - r2) + s2
r1 = 70
s1 = 0
r2 = 140
s2 = 255
pixelVal_vec = np.vectorize(pixelVal)

# Apply contrast stretching.
contrast_stretched = pixelVal_vec(img, r1, s1, r2, s2)

print("Constrat Strethcing :")
# Save edited image.
cv2_imshow(contrast_stretched)


Enter fullscreen mode Exit fullscreen mode

image

Gray-Level Slicing



class pointProcessing:
 def slicedGreyScale(self,image):
 # T1 and T2 Represent Lower and Upper Threshold Value
  T1 = 100
  T2 = 200
  h, w, c = img.shape
  img_thresh_back = np.zeros((h,w), dtype=np.uint8)
  for i in range(h):
    for j in range(w):
      if (T1 < image[i,j] and image[i,j] < T2):
        img_thresh_back[i,j]= 255
      else:
        img_thresh_back[i,j]= image[i,j]
  cv2_imshow(img_thresh_back)
pointObj= pointProcessing()
pointObj.slicedGreyScale(img)


Enter fullscreen mode Exit fullscreen mode

download


6. Nearest neighbour Interpolation & Bilinear Interpolation.

Use of Average neighbour value and Bilinear



#Nearest neighbor Interpolation Using cv2.resize()Python
near_img = cv2.resize(img,None, fx = 2, fy = 2, interpolation = cv2.INTER_NEAREST)
cv2_imshow(near_img)

# Bilinear Interpolation 
bilinear_img = cv2.resize(img,None, fx = .5, fy = .5, interpolation = cv2.INTER_LINEAR)
cv2_imshow(bilinear_img)


Enter fullscreen mode Exit fullscreen mode

image


7. Lets try other operations available in OpenCV

  • Arithmetic operations — Addition, Division
  • Logical Operations on Binary Image — XOR, NOT
  • Geometrical Operations — Rotation, Affine Translation
  • Statistical operations — Mean, Variance

Addition and Division -



print("A : Addition and Division :")
img1 = cv2.imread('/content/parrot.jpg')
img2 = cv2.imread('/content/bg.jpg')
dst = cv2.addWeighted(img1,0.3,img2,0.7,0)
#Div
div = cv2.divide(img1, img2)
AddDiv = cv2.hconcat([dst,div])
cv2_imshow(AddDiv)


Enter fullscreen mode Exit fullscreen mode

image


XOR and NOT



print("B : Xor and Not Operations :")
#XOR function
bitwiseXor = cv2.bitwise_xor(img1, img2)
#NOT function
bitwiseNot = cv2.bitwise_not(img1)
#concat
img5 = cv2.hconcat([bitwiseXor,bitwiseNot])
cv2_imshow(img5)


Enter fullscreen mode Exit fullscreen mode

image


Rotation and Affine Translation



print("C : Geometric Operations :")
print("Rotation and Affine Translation :")
#Rotation
image = cv2.rotate(img1, cv2.cv2.ROTATE_90_CLOCKWISE)
cv2_imshow(image)
#Affine Translation
srcTri = np.array( [[0, 0], [img1.shape[1] - 1, 0], [0, img1.shape[0] - 1]] ).astype(np.float32)
dstTri = np.array( [[0, img1.shape[1]*0.33], [img1.shape[1]*0.85, img1.shape[0]*0.25], [img1.shape[1]*0.15, img1.shape[0]*0.7]] ).astype(np.float32)
warp_mat = cv2.getAffineTransform(srcTri, dstTri)
warp_dst = cv2.warpAffine(img1, warp_mat, (img1.shape[1], img1.shape[0]))
# Rotating the image after Warp
center = (warp_dst.shape[1]//2, warp_dst.shape[0]//2)
angle = -50
scale = 0.6
rot_mat = cv2.getRotationMatrix2D( center, angle, scale )
warp_rotate_dst = cv2.warpAffine(warp_dst, rot_mat, (warp_dst.shape[1], warp_dst.shape[0]))
cv2_imshow(warp_dst)


Enter fullscreen mode Exit fullscreen mode

image

image


Mean and Variance



print("D : Mean, Variance :")
#Mean of img1 and img2 
img7 = (img1+img2) * 0.5;
cv2_imshow(img7)
#Variance


Enter fullscreen mode Exit fullscreen mode

image


Image interpolation : Down Sampling



print("E : Image interpolation : Down Sampling")
ds = cv2.pyrDown(img1)
cv2_imshow(ds)


Enter fullscreen mode Exit fullscreen mode

image


As of now, We have covered the basics of OpenCV

Top comments (2)

Collapse
 
kamathecoinmaker profile image
kamathecoinmaker

Nice

Collapse
 
devangdayal profile image
Devang Dayal

Good Explanation and great hands on code.