DEV Community

Cover image for ๐ƒ๐ž๐ž๐ฉ ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐ : ๐€ ๐“๐ข๐ฆ๐ž๐ฅ๐ข๐ง๐ž ๐จ๐Ÿ ๐Š๐ž๐ฒ ๐Œ๐ข๐ฅ๐ž๐ฌ๐ญ๐จ๐ง๐ž๐ฌ
Ananya
Ananya

Posted on

๐ƒ๐ž๐ž๐ฉ ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐ : ๐€ ๐“๐ข๐ฆ๐ž๐ฅ๐ข๐ง๐ž ๐จ๐Ÿ ๐Š๐ž๐ฒ ๐Œ๐ข๐ฅ๐ž๐ฌ๐ญ๐จ๐ง๐ž๐ฌ

Deep learning

Deep learning has evolved over several decades through continuous advances in neural network models, learning algorithms, and computational power.
The timeline below highlights the key milestones and contributors that shaped modern deep learning.

1943 -- ๐๐ž๐ฎ๐ซ๐š๐ฅ ๐Œ๐จ๐๐ž๐ฅ (๐Œ๐œ๐‚๐ฎ๐ฅ๐ฅ๐จ๐œ๐ก & ๐๐ข๐ญ๐ญ๐ฌ)
โ€ข First mathematical model of a biological neuron
โ€ข Foundation of artificial neural networks

1957 -- ๐๐ž๐ซ๐œ๐ž๐ฉ๐ญ๐ซ๐จ๐ง (๐…๐ซ๐š๐ง๐ค ๐‘๐จ๐ฌ๐ž๐ง๐›๐ฅ๐š๐ญ๐ญ)
โ€ข First learning algorithm for neural networks
โ€ข Enabled binary classification using weighted inputs

1982 -- ๐‡๐จ๐ฉ๐Ÿ๐ข๐ž๐ฅ๐ ๐๐ž๐ญ๐ฐ๐จ๐ซ๐ค (๐‰๐จ๐ก๐ง ๐‡๐จ๐ฉ๐Ÿ๐ข๐ž๐ฅ๐)
โ€ข Introduced recurrent neural networks
โ€ข Enabled associative memory

1985 -- ๐๐จ๐ฅ๐ญ๐ณ๐ฆ๐š๐ง๐ง ๐Œ๐š๐œ๐ก๐ข๐ง๐ž (๐‡๐ข๐ง๐ญ๐จ๐ง & ๐’๐ž๐ฃ๐ง๐จ๐ฐ๐ฌ๐ค๐ข)
โ€ข Introduced stochastic learning
โ€ข Basis for deep representations

1986 -- ๐๐š๐œ๐ค๐ฉ๐ซ๐จ๐ฉ๐š๐ ๐š๐ญ๐ข๐จ๐ง (๐‘๐ฎ๐ฆ๐ž๐ฅ๐ก๐š๐ซ๐ญ, ๐‡๐ข๐ง๐ญ๐จ๐ง, ๐–๐ข๐ฅ๐ฅ๐ข๐š๐ฆ๐ฌ)
โ€ข Enabled training of multilayer networks
โ€ข Core optimization algorithm

๐‹๐š๐ญ๐ž 1980๐ฌ -1990๐ฌ -- ๐€๐ˆ ๐–๐ข๐ง๐ญ๐ž๐ซ
โ€ข Limited computation and reduced funding
โ€ข Shift toward simpler ML models

1990 -- ๐’๐•๐Œ (๐•๐ฅ๐š๐๐ข๐ฆ๐ข๐ซ ๐•๐š๐ฉ๐ง๐ข๐ค)
โ€ข Margin-based classification
โ€ข Effective for high-dimensional data

1997 -- ๐‹๐’๐“๐Œ (๐‡๐จ๐œ๐ก๐ซ๐ž๐ข๐ญ๐ž๐ซ & ๐’๐œ๐ก๐ฆ๐ข๐๐ก๐ฎ๐›๐ž๐ซ)
โ€ข Solved vanishing gradient problem
โ€ข Enabled sequence learning

๐‹๐š๐ญ๐ž 1990๐ฌ - 2000๐ฌ -- ๐†๐๐” ๐‚๐จ๐ฆ๐ฉ๐ฎ๐ญ๐ข๐ง๐ 
โ€ข Accelerated neural network training
โ€ข Enabled large-scale deep learning

2012 -- ๐ƒ๐ž๐ž๐ฉ ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐  ๐‘๐ž๐ฏ๐จ๐ฅ๐ฎ๐ญ๐ข๐จ๐ง (๐€๐ฅ๐ž๐ฑ๐๐ž๐ญ)
โ€ข CNN breakthrough on ImageNet
โ€ข Widespread DL adoption

2014 -- ๐†๐€๐๐ฌ (๐ˆ๐š๐ง ๐†๐จ๐จ๐๐Ÿ๐ž๐ฅ๐ฅ๐จ๐ฐ)
โ€ข Introduced adversarial learning
โ€ข Enabled data and image generation

2016 -- ๐ƒ๐ž๐ž๐ฉ ๐‘๐‹ (๐€๐ฅ๐ฉ๐ก๐š๐†๐จ)
โ€ข DL + reinforcement learning
โ€ข Superhuman decision-making

2017 -- ๐“๐ซ๐š๐ง๐ฌ๐Ÿ๐จ๐ซ๐ฆ๐ž๐ซ๐ฌ (๐€๐ฌ๐ก๐ข๐ฌ๐ก ๐•๐š๐ฌ๐ฐ๐š๐ง๐ข ๐ž๐ญ ๐š๐ฅ.)
โ€ข Introduced self-attention
โ€ข Foundation of modern NLP

2020 -- ๐’๐ž๐ฅ๐Ÿ-๐’๐ฎ๐ฉ๐ž๐ซ๐ฏ๐ข๐ฌ๐ž๐ ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐  (๐˜๐š๐ง๐ง ๐‹๐ž๐‚๐ฎ๐ง)
โ€ข Reduced need for labeled data
โ€ข Improved representation learning

2022 - ๐๐ซ๐ž๐ฌ๐ž๐ง๐ญ -- ๐‹๐š๐ซ๐ ๐ž ๐‹๐š๐ง๐ ๐ฎ๐š๐ ๐ž ๐Œ๐จ๐๐ž๐ฅ๐ฌ
โ€ข Scaled transformers for multimodal AI
โ€ข Real-world deployment at scale

Top comments (0)