Deep learning has evolved over several decades through continuous advances in neural network models, learning algorithms, and computational power.
The timeline below highlights the key milestones and contributors that shaped modern deep learning.
1943 -- ๐๐๐ฎ๐ซ๐๐ฅ ๐๐จ๐๐๐ฅ (๐๐๐๐ฎ๐ฅ๐ฅ๐จ๐๐ก & ๐๐ข๐ญ๐ญ๐ฌ)
โข First mathematical model of a biological neuron
โข Foundation of artificial neural networks
1957 -- ๐๐๐ซ๐๐๐ฉ๐ญ๐ซ๐จ๐ง (๐
๐ซ๐๐ง๐ค ๐๐จ๐ฌ๐๐ง๐๐ฅ๐๐ญ๐ญ)
โข First learning algorithm for neural networks
โข Enabled binary classification using weighted inputs
1982 -- ๐๐จ๐ฉ๐๐ข๐๐ฅ๐ ๐๐๐ญ๐ฐ๐จ๐ซ๐ค (๐๐จ๐ก๐ง ๐๐จ๐ฉ๐๐ข๐๐ฅ๐)
โข Introduced recurrent neural networks
โข Enabled associative memory
1985 -- ๐๐จ๐ฅ๐ญ๐ณ๐ฆ๐๐ง๐ง ๐๐๐๐ก๐ข๐ง๐ (๐๐ข๐ง๐ญ๐จ๐ง & ๐๐๐ฃ๐ง๐จ๐ฐ๐ฌ๐ค๐ข)
โข Introduced stochastic learning
โข Basis for deep representations
1986 -- ๐๐๐๐ค๐ฉ๐ซ๐จ๐ฉ๐๐ ๐๐ญ๐ข๐จ๐ง (๐๐ฎ๐ฆ๐๐ฅ๐ก๐๐ซ๐ญ, ๐๐ข๐ง๐ญ๐จ๐ง, ๐๐ข๐ฅ๐ฅ๐ข๐๐ฆ๐ฌ)
โข Enabled training of multilayer networks
โข Core optimization algorithm
๐๐๐ญ๐ 1980๐ฌ -1990๐ฌ -- ๐๐ ๐๐ข๐ง๐ญ๐๐ซ
โข Limited computation and reduced funding
โข Shift toward simpler ML models
1990 -- ๐๐๐ (๐๐ฅ๐๐๐ข๐ฆ๐ข๐ซ ๐๐๐ฉ๐ง๐ข๐ค)
โข Margin-based classification
โข Effective for high-dimensional data
1997 -- ๐๐๐๐ (๐๐จ๐๐ก๐ซ๐๐ข๐ญ๐๐ซ & ๐๐๐ก๐ฆ๐ข๐๐ก๐ฎ๐๐๐ซ)
โข Solved vanishing gradient problem
โข Enabled sequence learning
๐๐๐ญ๐ 1990๐ฌ - 2000๐ฌ -- ๐๐๐ ๐๐จ๐ฆ๐ฉ๐ฎ๐ญ๐ข๐ง๐
โข Accelerated neural network training
โข Enabled large-scale deep learning
2012 -- ๐๐๐๐ฉ ๐๐๐๐ซ๐ง๐ข๐ง๐ ๐๐๐ฏ๐จ๐ฅ๐ฎ๐ญ๐ข๐จ๐ง (๐๐ฅ๐๐ฑ๐๐๐ญ)
โข CNN breakthrough on ImageNet
โข Widespread DL adoption
2014 -- ๐๐๐๐ฌ (๐๐๐ง ๐๐จ๐จ๐๐๐๐ฅ๐ฅ๐จ๐ฐ)
โข Introduced adversarial learning
โข Enabled data and image generation
2016 -- ๐๐๐๐ฉ ๐๐ (๐๐ฅ๐ฉ๐ก๐๐๐จ)
โข DL + reinforcement learning
โข Superhuman decision-making
2017 -- ๐๐ซ๐๐ง๐ฌ๐๐จ๐ซ๐ฆ๐๐ซ๐ฌ (๐๐ฌ๐ก๐ข๐ฌ๐ก ๐๐๐ฌ๐ฐ๐๐ง๐ข ๐๐ญ ๐๐ฅ.)
โข Introduced self-attention
โข Foundation of modern NLP
2020 -- ๐๐๐ฅ๐-๐๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐๐๐๐ซ๐ง๐ข๐ง๐ (๐๐๐ง๐ง ๐๐๐๐ฎ๐ง)
โข Reduced need for labeled data
โข Improved representation learning
2022 - ๐๐ซ๐๐ฌ๐๐ง๐ญ -- ๐๐๐ซ๐ ๐ ๐๐๐ง๐ ๐ฎ๐๐ ๐ ๐๐จ๐๐๐ฅ๐ฌ
โข Scaled transformers for multimodal AI
โข Real-world deployment at scale

Top comments (0)