DEV Community

bankolejohn
bankolejohn

Posted on

๐—™๐—ฟ๐—ผ๐—บ ๐—œ๐—ฑ๐—ฒ๐—ฎ ๐˜๐—ผ ๐—œ๐—บ๐—ฝ๐—ฎ๐—ฐ๐˜: ๐—จ๐—ป๐—ฑ๐—ฒ๐—ฟ๐˜€๐˜๐—ฎ๐—ป๐—ฑ๐—ถ๐—ป๐—ด ๐˜๐—ต๐—ฒ ๐—ฅ๐—ฒ๐—ฎ๐—น-๐—ช๐—ผ๐—ฟ๐—น๐—ฑ ๐— ๐—Ÿ ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜ ๐—ช๐—ผ๐—ฟ๐—ธ๐—ณ๐—น๐—ผ๐˜„

As I take intentional steps into the world of AI and Machine Learning, one thing has become clear: ๐˜ฎ๐˜ข๐˜ค๐˜ฉ๐˜ช๐˜ฏ๐˜ฆ ๐˜ญ๐˜ฆ๐˜ข๐˜ณ๐˜ฏ๐˜ช๐˜ฏ๐˜จ ๐˜ช๐˜ด ๐˜ฏ๐˜ฐ๐˜ต ๐˜ซ๐˜ถ๐˜ด๐˜ต ๐˜ข๐˜ฃ๐˜ฐ๐˜ถ๐˜ต ๐˜ธ๐˜ณ๐˜ช๐˜ต๐˜ช๐˜ฏ๐˜จ ๐˜ค๐˜ฐ๐˜ฅ๐˜ฆ ๐˜ฐ๐˜ณ ๐˜ต๐˜ณ๐˜ข๐˜ช๐˜ฏ๐˜ช๐˜ฏ๐˜จ ๐˜ฎ๐˜ฐ๐˜ฅ๐˜ฆ๐˜ญ๐˜ด -itโ€™s about solving real problems with clarity, structure, and purpose.

Hereโ€™s a breakdown of the ML workflow Iโ€™ve been studying and practicing -not just from a technical view, but from a problem-solving mindset that aligns with real business needs:

  1. ๐——๐—ฒ๐—ณ๐—ถ๐—ป๐—ฒ ๐˜๐—ต๐—ฒ ๐—ฃ๐—ฟ๐—ผ๐—ฏ๐—น๐—ฒ๐—บ ๐—™๐—ถ๐—ฟ๐˜€๐˜, ๐—ก๐—ผ๐˜ ๐˜๐—ต๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น
    Before touching data or algorithms, the first step is always asking:
    โ€œWhat problem are we trying to solve, and why does it matter?โ€
    Are we predicting customer churn? Detecting fraud? Forecasting demand?
    This clarity influences everything that follows, from the type of data we collect to the model we build and how we measure success. A project that starts with a vague goal often leads to wasted effort. But one that starts with a ๐˜„๐—ฒ๐—น๐—น-๐—ฑ๐—ฒ๐—ณ๐—ถ๐—ป๐—ฒ๐—ฑ ๐—ผ๐—ฏ๐—ท๐—ฒ๐—ฐ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—ฎ๐—ป๐—ฑ ๐—บ๐—ฒ๐—ฎ๐˜€๐˜‚๐—ฟ๐—ฎ๐—ฏ๐—น๐—ฒ ๐˜€๐˜‚๐—ฐ๐—ฐ๐—ฒ๐˜€๐˜€ ๐—ฐ๐—ฟ๐—ถ๐˜๐—ฒ๐—ฟ๐—ถ๐—ฎ is positioned to make real impact.

  2. ๐—š๐—ฎ๐˜๐—ต๐—ฒ๐—ฟ ๐—ฎ๐—ป๐—ฑ ๐—ฃ๐—ฟ๐—ฒ๐—ฝ๐—ฎ๐—ฟ๐—ฒ ๐˜๐—ต๐—ฒ ๐——๐—ฎ๐˜๐—ฎ
    Once the problem is clear, the next step is sourcing quality data from databases, logs, APIs, or even unstructured sources like text or images. But raw data is messy.
    We clean it, remove duplicates, handle missing values, and organize it for analysis. Then comes ๐—˜๐˜…๐—ฝ๐—น๐—ผ๐—ฟ๐—ฎ๐˜๐—ผ๐—ฟ๐˜† ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐—ถ๐˜€ (๐—˜๐——๐—”) -using visualizations and statistics to understand patterns, correlations, and outliers. This step is critical. It helps us uncover insights and make smarter choices about feature engineering and model selection.

    1. ๐—ฆ๐—ฒ๐—น๐—ฒ๐—ฐ๐˜ ๐—ฎ๐—ป๐—ฑ ๐—ง๐—ฟ๐—ฎ๐—ถ๐—ป ๐˜๐—ต๐—ฒ ๐—ฅ๐—ถ๐—ด๐—ต๐˜ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น Model selection isnโ€™t about choosing the most advanced algorithm -๐—ถ๐˜โ€™๐˜€ ๐—ฎ๐—ฏ๐—ผ๐˜‚๐˜ ๐—ฐ๐—ต๐—ผ๐—ผ๐˜€๐—ถ๐—ป๐—ด ๐˜๐—ต๐—ฒ ๐—ฟ๐—ถ๐—ด๐—ต๐˜ ๐˜๐—ผ๐—ผ๐—น ๐—ณ๐—ผ๐—ฟ ๐˜๐—ต๐—ฒ ๐—ท๐—ผ๐—ฏ. If the data is tabular, we might use decision trees or gradient boosting. For text or sequences, maybe transformers or RNNs. And sometimes, the simplest model works best. Itโ€™s all about balancing accuracy, interpretability, and efficiency, especially in business scenarios where transparency and speed matter as much as results.
  3. ๐—˜๐˜ƒ๐—ฎ๐—น๐˜‚๐—ฎ๐˜๐—ฒ ๐˜„๐—ถ๐˜๐—ต ๐˜๐—ต๐—ฒ ๐—ฅ๐—ถ๐—ด๐—ต๐˜ ๐— ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฐ๐˜€

    You canโ€™t improve what you donโ€™t measure and not all problems use the same yardstick.

    โ€ข For classification, we look at accuracy, precision, recall, F1-score, and AUC-ROC.

    โ€ข For regression, we use RMSE, MSE, and Rยฒ.

    โ€ข For anomaly detection, we focus on recall vs. precision trade-offs.

    Itโ€™s not just about getting high scores. Itโ€™s about understanding what those scores mean in the real world because catching fraud or diagnosing disease has consequences beyond metrics.

  4. ๐—ง๐˜‚๐—ป๐—ฒ, ๐——๐—ฒ๐—ฝ๐—น๐—ผ๐˜†, ๐—ฎ๐—ป๐—ฑ ๐— ๐—ผ๐—ป๐—ถ๐˜๐—ผ๐—ฟ

    After training, we fine-tune hyperparameters (like learning rates or tree depths) to boost performance without overfitting.

    Then comes deployment -serving the model via APIs or integrating it into an application. But it doesnโ€™t stop there. The real world changes. Data drifts. So, we ๐—บ๐—ผ๐—ป๐—ถ๐˜๐—ผ๐—ฟ ๐—ฝ๐—ฒ๐—ฟ๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐—ป๐—ฐ๐—ฒ ๐—ผ๐˜ƒ๐—ฒ๐—ฟ ๐˜๐—ถ๐—บ๐—ฒ, retrain when needed, and keep the system adaptive.

๐—™๐—ถ๐—ป๐—ฎ๐—น ๐—ง๐—ต๐—ผ๐˜‚๐—ด๐—ต๐˜๐˜€
What Iโ€™ve learned is this: ๐—” ๐—ด๐—ผ๐—ผ๐—ฑ ๐—บ๐—ฎ๐—ฐ๐—ต๐—ถ๐—ป๐—ฒ ๐—น๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น ๐—ถ๐˜€๐—ปโ€™๐˜ ๐—ท๐˜‚๐˜€๐˜ ๐˜€๐—บ๐—ฎ๐—ฟ๐˜ -๐—ถ๐˜โ€™๐˜€ ๐˜‚๐˜€๐—ฒ๐—ณ๐˜‚๐—น, ๐—ฑ๐—ฒ๐—ฝ๐—ฒ๐—ป๐—ฑ๐—ฎ๐—ฏ๐—น๐—ฒ, ๐—ฎ๐—ป๐—ฑ ๐—ฎ๐—น๐—ถ๐—ด๐—ป๐—ฒ๐—ฑ ๐˜„๐—ถ๐˜๐—ต ๐—ฟ๐—ฒ๐—ฎ๐—น ๐—ด๐—ผ๐—ฎ๐—น๐˜€.
This workflow has helped me connect the dots between technical skills and real-world impact and itโ€™s a big step in my AI/ML learning journey. I'm excited to keep building, exploring, and learning how to use ML to solve meaningful problems.
Keep Learning!

MachineLearning #AI #MLOps #DevOps #DataScience #RealWorldAI #LearningInPublic #KeepBuilding #AWS #AIJourney

Top comments (0)