DEV Community

Cover image for Test Your Tests: Does Your Crisis Simulation Match Reality?
CrisisCore-Systems
CrisisCore-Systems

Posted on

Test Your Tests: Does Your Crisis Simulation Match Reality?

Part 5 of CrisisCore Build Log — Start here: https://dev.to/crisiscoresystems/testing-privacy-preserving-analytics-verifying-that-insights-dont-leak-identity-e37

How do you know your simulated distress signals actually correlate with real distress?


We've built elaborate crisis simulations. We generate panic attack navigation patterns. We simulate dissociation inactivity. We create sensory overload preference churning. Our test suites pass beautifully.

If you want privacy-first, offline health tech to exist without surveillance funding it: sponsor the build → https://paintracker.ca/sponser

But here's the uncomfortable question: are we testing against reality, or against our own assumptions about reality?

If our simulations are wrong—if real panic attacks don't actually look like our simulated panic attacks—then our passing tests give us false confidence. We're testing that our system detects what we think crises look like, not what crises actually look like.

This is the meta-problem of simulation testing: validating the validity of our validations.

The Ground Truth Problem

In most testing, ground truth is clear. A button either works or it doesn't. A calculation is either correct or incorrect.

For crisis detection, ground truth is murky:

  • We can't ethically induce real crises for testing
  • Self-reported crisis states are unreliable (people in crisis aren't filing accurate reports)
  • Even clinical assessments happen after the fact, not during the crisis

So how do we validate our simulations against reality we can't directly observe?

interface ValidationChallenge {
  // The core epistemological problem
  whatWeWant: 'Simulations that match real crisis patterns';
  whatWeHave: 'Simulations based on our assumptions about crisis patterns';
  theGap: 'No direct observation of real-time crisis states';

  // Indirect validation strategies
  strategies: [
    'Retrospective pattern matching',
    'Anonymized aggregate analysis', 
    'Clinical correlation studies',
    'User feedback loops',
    'Signal fidelity metrics'
  ];
}
Enter fullscreen mode Exit fullscreen mode

Retrospective Pattern Matching

We can't watch crises happen, but we can look at sessions that ended with crisis-related outcomes:

interface RetrospectiveValidation {
  // Sessions where we KNOW crisis occurred (from user-reported outcomes)
  knownCrisisSessions: SessionData[];

  // Our simulated crisis sessions
  simulatedCrisisSessions: SessionData[];

  // How well do they match?
  signalOverlap: number;        // What % of signals appear in both?
  signalDistribution: number;   // How similar are the distributions?
  temporalPattern: number;      // Does timing match?
  missingSignals: string[];     // What real signals are we not simulating?
  extraSignals: string[];       // What are we simulating that doesn't appear in reality?
}

class RetrospectiveValidator {
  async validateSimulations(): Promise<ValidationReport> {
    // Get sessions that ended with crisis resource access or app abandonment
    // during known difficult times (with user consent for research)
    const knownDifficultSessions = await this.getConsentedDifficultSessions();

    // Extract signal patterns
    const realPatterns = this.extractSignalPatterns(knownDifficultSessions);

    // Generate equivalent simulated sessions
    const simulatedSessions = this.generateSimulatedSessions(
      knownDifficultSessions.length
    );
    const simulatedPatterns = this.extractSignalPatterns(simulatedSessions);

    // Compare
    return {
      signalOverlap: this.calculateOverlap(realPatterns, simulatedPatterns),
      distributionMatch: this.compareDistributions(realPatterns, simulatedPatterns),
      missingSignals: this.findMissingSignals(realPatterns, simulatedPatterns),
      extraSignals: this.findExtraSignals(realPatterns, simulatedPatterns),
      recommendations: this.generateRecommendations(realPatterns, simulatedPatterns)
    };
  }

  private extractSignalPatterns(sessions: SessionData[]): SignalPatternProfile {
    const profile: SignalPatternProfile = {
      navigationPatterns: {},
      inputPatterns: {},
      temporalPatterns: {},
      featureUsage: {},
      exitPatterns: {}
    };

    for (const session of sessions) {
      // Extract navigation entropy
      const navEntropy = this.calculateNavigationEntropy(session.navigationEvents);
      this.addToDistribution(profile.navigationPatterns, 'entropy', navEntropy);

      // Extract input patterns
      const inputChaos = this.calculateInputChaos(session.inputEvents);
      this.addToDistribution(profile.inputPatterns, 'chaos', inputChaos);

      // Extract timing patterns
      const avgTimeBetweenActions = this.calculateAvgActionInterval(session);
      this.addToDistribution(profile.temporalPatterns, 'interval', avgTimeBetweenActions);

      // Extract feature usage
      for (const feature of session.featuresAccessed) {
        profile.featureUsage[feature] = (profile.featureUsage[feature] || 0) + 1;
      }

      // Extract exit patterns
      this.addToDistribution(profile.exitPatterns, session.exitType, 1);
    }

    return profile;
  }

  private findMissingSignals(
    real: SignalPatternProfile, 
    simulated: SignalPatternProfile
  ): string[] {
    const missing: string[] = [];

    // Find signals that appear in real data but not in simulations
    for (const [signal, frequency] of Object.entries(real.featureUsage)) {
      if (!simulated.featureUsage[signal] && frequency > real.totalSessions * 0.1) {
        missing.push(`feature:${signal}`);
      }
    }

    // Check for navigation patterns we're not simulating
    for (const [pattern, distribution] of Object.entries(real.navigationPatterns)) {
      if (!simulated.navigationPatterns[pattern]) {
        missing.push(`navigation:${pattern}`);
      }
    }

    return missing;
  }
}
Enter fullscreen mode Exit fullscreen mode

Signal Fidelity Scoring

We quantify how well our simulations match reality:

interface SignalFidelityScore {
  overall: number;              // 0-1 overall match quality

  dimensions: {
    signalPresence: number;     // Do we simulate the right signals?
    signalAbsence: number;      // Do we correctly NOT simulate false signals?
    distributionMatch: number;  // Do signal intensities match?
    temporalMatch: number;      // Does timing match?
    sequenceMatch: number;      // Do signals occur in realistic order?
  };

  problematicAreas: {
    signal: string;
    issue: 'missing' | 'over-represented' | 'wrong-timing' | 'wrong-intensity';
    realValue: number;
    simulatedValue: number;
    impact: 'low' | 'medium' | 'high';
  }[];
}

class SignalFidelityAnalyzer {
  calculateFidelity(
    realPatterns: SignalPatternProfile,
    simulatedPatterns: SignalPatternProfile
  ): SignalFidelityScore {
    const presence = this.scoreSignalPresence(realPatterns, simulatedPatterns);
    const absence = this.scoreSignalAbsence(realPatterns, simulatedPatterns);
    const distribution = this.scoreDistributionMatch(realPatterns, simulatedPatterns);
    const temporal = this.scoreTemporalMatch(realPatterns, simulatedPatterns);
    const sequence = this.scoreSequenceMatch(realPatterns, simulatedPatterns);

    const overall = (
      presence * 0.25 +
      absence * 0.15 +
      distribution * 0.25 +
      temporal * 0.20 +
      sequence * 0.15
    );

    return {
      overall,
      dimensions: { 
        signalPresence: presence, 
        signalAbsence: absence,
        distributionMatch: distribution,
        temporalMatch: temporal,
        sequenceMatch: sequence
      },
      problematicAreas: this.identifyProblems(realPatterns, simulatedPatterns)
    };
  }

  private scoreDistributionMatch(
    real: SignalPatternProfile,
    simulated: SignalPatternProfile
  ): number {
    // Use Kolmogorov-Smirnov test or similar to compare distributions
    const scores: number[] = [];

    for (const dimension of ['navigationPatterns', 'inputPatterns', 'temporalPatterns']) {
      const realDist = this.normalizeDistribution(real[dimension]);
      const simDist = this.normalizeDistribution(simulated[dimension]);

      const ksScore = this.kolmogorovSmirnovTest(realDist, simDist);
      scores.push(1 - ksScore); // Lower KS = better match
    }

    return scores.reduce((a, b) => a + b, 0) / scores.length;
  }

  private identifyProblems(
    real: SignalPatternProfile,
    simulated: SignalPatternProfile
  ): SignalFidelityScore['problematicAreas'] {
    const problems: SignalFidelityScore['problematicAreas'] = [];

    // Check each signal type
    const allSignals = new Set([
      ...Object.keys(real.featureUsage),
      ...Object.keys(simulated.featureUsage)
    ]);

    for (const signal of allSignals) {
      const realFreq = real.featureUsage[signal] || 0;
      const simFreq = simulated.featureUsage[signal] || 0;

      const realNorm = realFreq / real.totalSessions;
      const simNorm = simFreq / simulated.totalSessions;

      if (realFreq > 0 && simFreq === 0) {
        problems.push({
          signal,
          issue: 'missing',
          realValue: realNorm,
          simulatedValue: 0,
          impact: realNorm > 0.3 ? 'high' : realNorm > 0.1 ? 'medium' : 'low'
        });
      } else if (Math.abs(realNorm - simNorm) > 0.2) {
        problems.push({
          signal,
          issue: simNorm > realNorm ? 'over-represented' : 'wrong-intensity',
          realValue: realNorm,
          simulatedValue: simNorm,
          impact: Math.abs(realNorm - simNorm) > 0.4 ? 'high' : 'medium'
        });
      }
    }

    return problems;
  }
}
Enter fullscreen mode Exit fullscreen mode

False Positive Calibration

Our simulations should produce false positive rates that match reality:

describe('False Positive Calibration', () => {
  it('simulated false positive rate matches real-world rate', async () => {
    // Get real-world false positive data (from user feedback)
    const realWorldData = await getFalsePositiveFeedback();
    const realFPR = realWorldData.falsePositives / realWorldData.totalDetections;

    // Run simulations designed to NOT trigger crisis
    const nonCrisisSimulations = generateNonCrisisSimulations(1000);
    const simulatedDetections = nonCrisisSimulations.filter(
      sim => crisisDetector.analyze(sim).detectedCrisis !== null
    );
    const simulatedFPR = simulatedDetections.length / 1000;

    // Simulated FPR should be within 20% of real FPR
    expect(Math.abs(simulatedFPR - realFPR) / realFPR).toBeLessThan(0.2);
  });

  it('false positive scenarios match real-world false positive patterns', async () => {
    // Get patterns that caused real false positives
    const realFalsePositives = await getRealFalsePositivePatterns();

    // Check if our simulations include these patterns
    const coveredPatterns: string[] = [];
    const uncoveredPatterns: string[] = [];

    for (const pattern of realFalsePositives) {
      const simulation = findMatchingSimulation(pattern);
      if (simulation) {
        coveredPatterns.push(pattern.type);
      } else {
        uncoveredPatterns.push(pattern.type);
      }
    }

    // Should cover at least 80% of real false positive patterns
    const coverageRate = coveredPatterns.length / realFalsePositives.length;
    expect(coverageRate).toBeGreaterThan(0.8);

    // Log uncovered patterns for future simulation development
    if (uncoveredPatterns.length > 0) {
      console.log('Uncovered false positive patterns:', uncoveredPatterns);
    }
  });
});

class FalsePositiveCalibrator {
  async calibrate(): Promise<CalibrationResult> {
    const realData = await this.getRealWorldFalsePositiveData();

    // Categorize real false positives
    const categories = this.categorizePatterns(realData.falsePositives);

    // Check simulation coverage for each category
    const coverage: Map<string, CoverageReport> = new Map();

    for (const [category, patterns] of categories) {
      const simulations = this.getSimulationsForCategory(category);
      const matchRate = this.calculateMatchRate(patterns, simulations);

      coverage.set(category, {
        realPatternCount: patterns.length,
        simulationCount: simulations.length,
        matchRate,
        missingPatterns: this.findMissingPatterns(patterns, simulations),
        recommendations: this.generateRecommendations(category, matchRate)
      });
    }

    return {
      overallCalibration: this.calculateOverallCalibration(coverage),
      categoryReports: coverage,
      prioritizedActions: this.prioritizeActions(coverage)
    };
  }

  private categorizePatterns(falsePositives: FalsePositiveRecord[]): Map<string, Pattern[]> {
    const categories = new Map<string, Pattern[]>();

    for (const fp of falsePositives) {
      const category = this.inferCategory(fp);

      if (!categories.has(category)) {
        categories.set(category, []);
      }
      categories.get(category)!.push(fp.pattern);
    }

    return categories;
  }

  private inferCategory(fp: FalsePositiveRecord): string {
    // Categorize based on what caused the false positive
    if (fp.userExplanation?.includes('new user')) return 'onboarding_exploration';
    if (fp.userExplanation?.includes('accident')) return 'accidental_input';
    if (fp.pattern.navigationEntropy > 0.7) return 'legitimate_fast_navigation';
    if (fp.pattern.inactivityDuration > 300000) return 'intentional_pause';
    if (fp.pattern.preferenceChanges > 5) return 'customization_session';
    return 'unknown';
  }
}
Enter fullscreen mode Exit fullscreen mode

Missing Signal Detection

The scariest gap: signals we're not even looking for.

interface MissingSignalDetector {
  // What signals appear in real crisis sessions that we don't simulate?
  findUnknownSignals(realSessions: SessionData[]): UnknownSignal[];

  // What patterns correlate with crisis outcomes that we haven't modeled?
  discoverNewPatterns(realSessions: SessionData[]): DiscoveredPattern[];
}

class SignalDiscovery {
  async discoverMissingSignals(): Promise<DiscoveryReport> {
    const realCrisisSessions = await this.getConsentedCrisisSessions();
    const realNonCrisisSessions = await this.getConsentedNonCrisisSessions();

    // Extract ALL possible features from sessions
    const allFeatures = this.extractAllFeatures(realCrisisSessions);

    // Find features that differentiate crisis from non-crisis
    const discriminativeFeatures = this.findDiscriminativeFeatures(
      realCrisisSessions,
      realNonCrisisSessions,
      allFeatures
    );

    // Check which discriminative features we're already modeling
    const modeledFeatures = this.getModeledFeatures();
    const missingFeatures = discriminativeFeatures.filter(
      f => !modeledFeatures.includes(f.name)
    );

    return {
      discoveredSignals: missingFeatures,
      signalImportance: this.rankByImportance(missingFeatures),
      implementationPriority: this.prioritizeImplementation(missingFeatures),
      exampleSessions: this.findExampleSessions(missingFeatures, realCrisisSessions)
    };
  }

  private extractAllFeatures(sessions: SessionData[]): string[] {
    const features = new Set<string>();

    for (const session of sessions) {
      // Standard features
      features.add(`nav_entropy_${this.bucketize(session.navigationEntropy)}`);
      features.add(`session_duration_${this.bucketize(session.duration)}`);
      features.add(`input_rate_${this.bucketize(session.inputRate)}`);

      // Derive new potential features
      features.add(`time_of_day_${this.getTimeOfDayBucket(session.startTime)}`);
      features.add(`day_of_week_${new Date(session.startTime).getDay()}`);
      features.add(`session_since_last_${this.bucketize(session.timeSinceLastSession)}`);
      features.add(`consecutive_days_${session.consecutiveDaysActive}`);

      // Behavioral sequences
      const sequences = this.extractActionSequences(session.actions);
      for (const seq of sequences) {
        features.add(`seq_${seq}`);
      }

      // Feature co-occurrence
      for (const f1 of session.featuresUsed) {
        for (const f2 of session.featuresUsed) {
          if (f1 < f2) {
            features.add(`cooccur_${f1}_${f2}`);
          }
        }
      }
    }

    return Array.from(features);
  }

  private findDiscriminativeFeatures(
    crisisSessions: SessionData[],
    nonCrisisSessions: SessionData[],
    allFeatures: string[]
  ): DiscriminativeFeature[] {
    const results: DiscriminativeFeature[] = [];

    for (const feature of allFeatures) {
      const crisisRate = this.calculateFeatureRate(feature, crisisSessions);
      const nonCrisisRate = this.calculateFeatureRate(feature, nonCrisisSessions);

      // Calculate discrimination power
      const rateRatio = crisisRate / (nonCrisisRate + 0.001);
      const absoluteDiff = Math.abs(crisisRate - nonCrisisRate);

      // Feature is discriminative if it appears much more (or less) in crisis sessions
      if (rateRatio > 2 || rateRatio < 0.5 || absoluteDiff > 0.2) {
        results.push({
          name: feature,
          crisisRate,
          nonCrisisRate,
          discriminationPower: Math.log(rateRatio),
          statisticalSignificance: this.calculateSignificance(
            crisisRate, crisisSessions.length,
            nonCrisisRate, nonCrisisSessions.length
          )
        });
      }
    }

    return results.sort((a, b) => 
      Math.abs(b.discriminationPower) - Math.abs(a.discriminationPower)
    );
  }
}
Enter fullscreen mode Exit fullscreen mode

Continuous Validation Loop

We build an ongoing process of simulation improvement:

interface ContinuousValidationLoop {
  // Daily: Check simulation fidelity against recent real data
  dailyFidelityCheck(): SignalFidelityScore;

  // Weekly: Run false positive calibration
  weeklyCalibration(): CalibrationResult;

  // Monthly: Discover new signals from accumulated data
  monthlySignalDiscovery(): DiscoveryReport;

  // Quarterly: Full retrospective validation
  quarterlyValidation(): ValidationReport;
}

class ValidationOrchestrator {
  async runContinuousValidation(): Promise<void> {
    // Schedule recurring validations
    schedule.daily(async () => {
      const fidelity = await this.checkFidelity();

      if (fidelity.overall < 0.7) {
        await this.alertTeam('Simulation fidelity dropped below threshold', fidelity);
      }

      await this.logMetric('simulation_fidelity', fidelity.overall);
    });

    schedule.weekly(async () => {
      const calibration = await this.calibrateFalsePositives();

      // Auto-generate test cases for uncovered patterns
      for (const uncovered of calibration.uncoveredPatterns) {
        await this.generateTestCase(uncovered);
        await this.createSimulationTicket(uncovered);
      }
    });

    schedule.monthly(async () => {
      const discovery = await this.discoverNewSignals();

      // Prioritize implementation of discovered signals
      for (const signal of discovery.prioritizedSignals.slice(0, 5)) {
        await this.createImplementationTicket(signal);
      }
    });
  }

  private async generateTestCase(pattern: UncoveredPattern): Promise<void> {
    const testCase = `
      it('detects ${pattern.name} pattern', () => {
        const session = createSessionWithPattern({
          ${pattern.features.map(f => `${f.name}: ${f.exampleValue}`).join(',\n          ')}
        });

        const result = crisisDetector.analyze(session);

        // TODO: Determine expected behavior
        // Pattern was associated with: ${pattern.associatedOutcome}
        expect(result).toMatchExpectedBehavior();
      });
    `;

    await this.addToTestBacklog(testCase, pattern);
  }
}
Enter fullscreen mode Exit fullscreen mode

The Validation Dashboard

We surface validation metrics for continuous monitoring:

function SimulationValidationDashboard() {
  const [fidelityHistory, setFidelityHistory] = useState<FidelityDataPoint[]>([]);
  const [latestDiscovery, setLatestDiscovery] = useState<DiscoveryReport | null>(null);
  const [calibrationStatus, setCalibrationStatus] = useState<CalibrationResult | null>(null);

  return (
    <div className="p-6 space-y-8">
      <h1 className="text-2xl font-bold">Simulation Validation Status</h1>

      {/* Fidelity Trend */}
      <section>
        <h2 className="text-lg font-semibold mb-4">Simulation Fidelity Over Time</h2>
        <FidelityTrendChart data={fidelityHistory} />

        <div className="grid grid-cols-5 gap-4 mt-4">
          {['signalPresence', 'signalAbsence', 'distributionMatch', 'temporalMatch', 'sequenceMatch'].map(dim => (
            <MetricCard 
              key={dim}
              label={formatDimensionLabel(dim)}
              value={fidelityHistory[fidelityHistory.length - 1]?.dimensions[dim]}
              trend={calculateTrend(fidelityHistory, dim)}
            />
          ))}
        </div>
      </section>

      {/* Missing Signals Alert */}
      {latestDiscovery?.discoveredSignals.length > 0 && (
        <section className="bg-yellow-50 border border-yellow-200 rounded-lg p-4">
          <h2 className="text-lg font-semibold text-yellow-800 mb-2">
            ⚠️ Discovered Unmolded Signals
          </h2>
          <p className="text-yellow-700 mb-4">
            The following signals appear in real crisis sessions but aren't in our simulations:
          </p>
          <ul className="space-y-2">
            {latestDiscovery.discoveredSignals.slice(0, 5).map(signal => (
              <li key={signal.name} className="flex justify-between">
                <span className="font-mono text-sm">{signal.name}</span>
                <span className="text-yellow-600">
                  {(signal.crisisRate * 100).toFixed(1)}% of crisis sessions
                </span>
              </li>
            ))}
          </ul>
        </section>
      )}

      {/* Calibration Status */}
      <section>
        <h2 className="text-lg font-semibold mb-4">False Positive Calibration</h2>
        <div className="grid grid-cols-3 gap-4">
          <MetricCard 
            label="Real-World FPR"
            value={`${(calibrationStatus?.realWorldFPR * 100).toFixed(1)}%`}
          />
          <MetricCard 
            label="Simulated FPR"
            value={`${(calibrationStatus?.simulatedFPR * 100).toFixed(1)}%`}
          />
          <MetricCard 
            label="Calibration Delta"
            value={`${(Math.abs(calibrationStatus?.delta) * 100).toFixed(1)}%`}
            status={calibrationStatus?.delta < 0.05 ? 'good' : 'warning'}
          />
        </div>
      </section>

      {/* Action Items */}
      <section>
        <h2 className="text-lg font-semibold mb-4">Validation Action Items</h2>
        <ul className="space-y-2">
          {generateActionItems(fidelityHistory, latestDiscovery, calibrationStatus).map((item, i) => (
            <li key={i} className="flex items-center gap-2">
              <PriorityBadge priority={item.priority} />
              <span>{item.description}</span>
            </li>
          ))}
        </ul>
      </section>
    </div>
  );
}
Enter fullscreen mode Exit fullscreen mode

Testing the Tests

We write tests for our validation framework itself:

describe('Validation Framework Tests', () => {
  describe('Signal Fidelity Calculator', () => {
    it('correctly identifies missing signals', () => {
      const realPatterns: SignalPatternProfile = {
        featureUsage: { 
          'help_page': 50, 
          'crisis_button': 30, 
          'unknown_pattern': 25 
        },
        totalSessions: 100
      };

      const simulatedPatterns: SignalPatternProfile = {
        featureUsage: { 
          'help_page': 45, 
          'crisis_button': 28 
          // missing 'unknown_pattern'
        },
        totalSessions: 100
      };

      const analyzer = new SignalFidelityAnalyzer();
      const result = analyzer.calculateFidelity(realPatterns, simulatedPatterns);

      expect(result.problematicAreas).toContainEqual(
        expect.objectContaining({
          signal: 'unknown_pattern',
          issue: 'missing'
        })
      );
    });
  });

  describe('False Positive Calibrator', () => {
    it('detects when simulation FPR diverges from reality', async () => {
      // Mock real-world FPR of 5%
      const mockRealWorldData = {
        totalDetections: 1000,
        falsePositives: 50
      };

      // Simulations producing 15% FPR (3x too high)
      const mockSimulations = Array(1000).fill(null).map((_, i) => ({
        triggeredCrisis: i < 150 // 15% trigger
      }));

      const calibrator = new FalsePositiveCalibrator();
      const result = await calibrator.compare(mockRealWorldData, mockSimulations);

      expect(result.isCalibrated).toBe(false);
      expect(result.recommendation).toContain('reduce simulation sensitivity');
    });
  });

  describe('Signal Discovery', () => {
    it('finds discriminative features', () => {
      const crisisSessions = generateSessionsWithFeature('late_night_usage', 0.7);
      const nonCrisisSessions = generateSessionsWithFeature('late_night_usage', 0.1);

      const discovery = new SignalDiscovery();
      const result = discovery.findDiscriminativeFeatures(
        crisisSessions,
        nonCrisisSessions,
        ['late_night_usage', 'normal_feature']
      );

      expect(result[0].name).toBe('late_night_usage');
      expect(result[0].discriminationPower).toBeGreaterThan(1);
    });
  });
});
Enter fullscreen mode Exit fullscreen mode

Conclusion

Testing crisis simulations is meta-work that feels removed from "real" development. But it's some of the most important work we do. Every simulation that doesn't match reality is a crisis we might miss or a false alarm that erodes user trust.

Key takeaways:

  1. Ground truth is indirect: We can't observe crises directly, so we validate through retrospective analysis and outcome correlation.

  2. Quantify fidelity: Signal fidelity scores give us a measurable target for simulation quality.

  3. Calibrate false positives: Our simulated FPR should match real-world FPR.

  4. Hunt for missing signals: The signals we're NOT simulating are the scariest gaps.

  5. Build continuous loops: Validation isn't a one-time activity—it's an ongoing process of refinement.

  6. Test the tests: Our validation framework itself needs tests.

The goal isn't perfect simulation—that's impossible. The goal is knowable imperfection: understanding exactly where our simulations diverge from reality so we can make informed decisions about acceptable risk.


This is Part 10 of our series on building trauma-informed healthcare applications. Previous posts covered crisis detection, testing strategies, recovery testing, cultural contexts, and cross-crisis calibration.

Coming Next: "Testing for Co-Occurrence: When Multiple Crises Happen Simultaneously"


Tags: #validation #simulation #testing #healthcare #trauma-informed #quality-assurance #machine-learning #ground-truth

Next up: https://dev.to/crisiscoresystems/testing-recovery-verifying-that-systems-actually-help-people-get-better-1o6o


Support this work

Top comments (0)