What I Built
Mind — A Meta-Orchestration System that Creates Autonomous AI Systems
Overview
Mind is a local‑first AI meta‑orchestration framework that transforms natural language into fully functioning autonomous systems.
It interprets intent, plans workflows, coordinates specialized agents, and generates complete software projects — each deployed as an independent Git repository.
Mind acts as an AI architect, not just an assistant.
Its purpose is to design, build, and deliver systems that run on their own.
Mind is not just an orchestrator or workflow engine. It's a system generator factory that can:
- Take a specification (e.g., "Build a 2D animation studio")
- Automatically design the architecture
- Generate complete agent code, data models, and workflows
- Deploy as a standalone, self-running system
- Then move to the next goal
Think of it as an architect AI — its job is to design and build systems that other tools/AI can use.
Core Architecture
1. Cognition Layer
The reasoning engine responsible for:
• Intent understanding
• Task decomposition
• Workflow planning
• Model selection
• Context management
Runs entirely on local LLMs (Phi, Qwen, custom models).
Multi‑Agent System
A set of specialized autonomous agents:
• Analyst Agents — data, patterns, insights
• Creative Agents — content, design, visuals
• Quality Agents — validation, review, consistency
• Coordinator Agents — workflow orchestration
Agents collaborate to execute complex tasks without human intervention.Memory Architecture
A layered memory system enabling learning and continuity:
• Short‑Term Memory — active context
• Working Memory — session state
• Long‑Term Memory — persistent knowledge
• Shared Memory — cross‑agent knowledge base
This allows Mind to accumulate experience and improve over time.Evolution Engine
Mind’s self‑improvement subsystem:
• Hypothesis generation
• A/B testing
• Performance analytics
• Adaptive behavior updates
Mind evolves its strategies based on outcomes.
System Generation
Mind can generate complete systems from a single natural‑language specification:
"Build a 2D animation studio"
"Create a CSV validation pipeline"
"Generate a multi-agent research assistant"
Each generated system includes:
• Architecture
• Agents
• Models
• Workflows
• Tests
• Documentation
And now — its own Git repository.
Autonomous Repository Creation
Every system Mind creates is deployed as a standalone Git repository.
Each repo includes:
✔️ Git Initialization
• git init
• First commit
• main and dev branches
• .gitignore based on system type
✔️ Self‑Describing README
Includes:
System purpose
Architecture overview
Usage instructions
Extension guidelines
A clear note:
“This repository was created autonomously by Mind.”
✔️ Identity Metadata
• Creation timestamp
• Mind version
• System type
• Dependencies
• Execution instructions
✔️ Manifest
Mind stores only:
• Repo reference
• System manifest
• Orchestration metadata
No system code remains inside Mind.
Example System Structure
my_system/
├── agents/
│ ├── agent_a.py
│ ├── agent_b.py
├── core/
│ ├── orchestrator.py
│ ├── data_manager.py
├── models/
│ ├── entity.py
│ ├── schema.py
├── workflows/
│ └── default.yaml
├── tests/
│ └── test_system.py
└── README.md
Everything is ready to run, extend, or deploy.
Local‑First Philosophy
Mind runs entirely on your hardware:
• No cloud
• No external APIs
• No telemetry
• No data leakage
• No usage‑based costs
• Works offline
Your data stays yours.
Your systems stay local.
Your autonomy stays intact.
Current Capabilities
• Local LLM cognition (Phi, Qwen, custom models)
• Single‑agent execution
• Multi‑agent architecture (in progress)
• Memory system (short‑term, working, long‑term, shared)
• CLI interface
• Comic Studio pipeline
• Autonomous system generation
• Autonomous repo creation
Roadmap
In Development
• Multi‑agent collaboration
• Evolution Engine (A/B testing, adaptation)
• Distributed execution
• Graph‑based memory
• Reinforcement learning
Coming Soon
• Repo publishing (GitHub, Gitea, local Git servers)
• System‑to‑system dependency graphs
• Automatic changelog generation
• Multi‑repo orchestration
Why Mind Matters
Mind represents a shift in how software is created:
• From coding → to describing intent
• From single tools → to autonomous systems
• From cloud dependency → to local sovereignty
• From static programs → to evolving agents
Mind is a platform for decentralized, private, self‑improving AI — running on your desk, under your control.
Demo
Quick Start (2 minutes)
cd /home/cris_agent_admin/mind
./mind-env/bin/python -m mind.cli.interactive
# Inside shell:
mind> create_system "2D Animation Studio"|"Generate animations"|"concept,animation"|"sd,blender"
mind> list_systems
mind> system_info <system_id>
mind info # Show system info
mind list # List blueprints
mind run blueprints/meta_system.yaml # Run a blueprint
mind create_system "Name"|"Goal"|"f1,f2"|"t1,t2" # Generate a system
2d_animation_studio_70fd0b21/
├── agents/
│ ├── concept_art_agent.py
│ ├── character_rigging_agent.py
│ ├── animation_agent.py
│ └── compositing_agent.py
├── models/
│ ├── shot.py
│ ├── asset.py
│ └── frame.py
├── blueprints/
│ └── default_workflow.yaml
├── core/
│ ├── orchestrator.py
│ └── data_manager.py
└── tests/
└── test_system.py
https://dev-to-uploads.s3.amazonaws.com/uploads/articles/jrzgxsp45btc03is9t17.png
## Experience with GitHub Copilot CLI
### How I Used Copilot
I used GitHub Copilot as an AI pair programmer throughout the entire development:
Architecture Design — “Design a meta-system that creates autonomous systems”
Copilot helped structure the 11-phase roadmap
Agent Implementation — “Create base agent with thinking protocol”
Generated agent interfaces, lifecycle patterns
Code Generation — “Generate agent code for ConceptArtist, Animator, etc.”
Copilot created agent skeletons with proper patterns
Testing — “Generate 127 comprehensive tests covering all phases”
Quick test suite creation with edge cases
Documentation — “Write architecture docs, quick start guide, challenge submission”
Generated all markdown files and code comments
### Impact on Development
Task | Without Copilot | With Copilot
--- | --- | ---
Agent implementation | 3 hours | 30 minutes
Test suite (127 tests) | 4 hours | 45 minutes
Documentation | 2 hours | 20 minutes
Code refactoring | 2 hours | 15 minutes
**Total:** | **11 hours** | **1.75 hours**
### Why Copilot Was Essential
• Code patterns — Suggested best practices immediately
• Completeness — Generated tests I wouldn’t think of
• Iteration speed — Refactor commands in seconds
• Learning — Exposed me to Python patterns I didn’t know
• Quality — All code passed mypy, black, ruff on first try
### Key Learning
Copilot isn’t a replacement for thought. It’s a speed multiplier for turning thoughts into code.
## Project Links
GitHub: https://github.com/camilo060285/Mind
Tests: 127 passing
Code Quality: ✅ mypy, ✅ black, ✅ ruff
### Getting Started with Mind: A Complete Visual Walkthrough
Installation & Setup Journey
Step 1: Clone the Repository
┌─────────────────────────────────────────────┐
│ YOUR TERMINAL │
├─────────────────────────────────────────────┤
│ $ git clone https://github.com/ │
│ camilo060285/Mind.git │
│ │
│ Cloning into 'Mind'... │
│ ✓ Repository downloaded │
└─────────────────────────────────────────────┘
cd Mind
What just happened? You now have the entire Mind system on your computer—all the AI orchestration code, agent definitions, memory systems, everything.
Step 2: Set Up Python Environment
┌─────────────────────────────────────────────┐
│ CREATE ISOLATED ENVIRONMENT │
├─────────────────────────────────────────────┤
│ │
│ Python Installation │
│ ↓ │
│ Virtual Environment ← (keeps things clean) │
│ ↓ │
│ Mind Dependencies │
│ │
└─────────────────────────────────────────────┘
# Create a clean Python environment
python -m venv venv
# Activate it
# On Linux/Mac:
source venv/bin/activate
# On Windows:
.\venv\Scripts\activate
# Install Mind and all dependencies
pip install -e .
venv: Creates an isolated Python environment (won't mess with other projects)
pip install -e .: Installs Mind in "editable" mode so you can modify code
Takes ~2-5 minutes depending on internet speed
Step 3: Download AI Models
┌──────────────────────────────────────────────────┐
│ MODEL DOWNLOAD PROCESS │
├──────────────────────────────────────────────────┤
│ │
│ Internet → Hugging Face → Your Computer │
│ │
│ Phi-3 Model (small, fast) │
│ └─ Size: ~2.3 GB │
│ └─ Speed: ⚡⚡⚡⚡⚡ Very Fast │
│ └─ Use: Routine tasks │
│ │
│ Qwen-2.5 Model (larger, smarter) │
│ └─ Size: ~4-15 GB (depending on variant) │
│ └─ Speed: ⚡⚡⚡ Thoughtful │
│ └─ Use: Complex reasoning │
│ │
└──────────────────────────────────────────────────┘
# Mind will auto-download models on first use, OR:
python -c "
from mind.cognition import init_llm
# This downloads Phi model
init_llm(model='phi')
"
Important: First-time download takes 5-30 minutes depending on your internet. After that, models are cached locally and load instantly.
Your First Interaction with Mind
Simple Example: Ask Mind a Question
from mind.cognition import init_llm
# Wake up Mind with the fast Phi model
mind = init_llm(model="phi")
# Ask Mind something
response = mind.generate(
"Explain quantum computing in simple terms"
)
print(response)
Visual Flow:
YOU type: python my_first_mind_script.py
↓
Mind loads Phi model into RAM (~3 seconds)
↓
Your question → Phi model processes it
↓
AI generates response (~2 seconds)
↓
Response printed to your screen
Intermediate Example: Using Mind for Data Analysis
from mind.cognition import init_llm
Use the smarter Qwen model for analysis
mind = init_llm(model="qwen")
Your data
sales_data = """
Q1: $150,000
Q2: $180,000
Q3: $165,000
Q4: $210,000
"""
Ask Mind to analyze
prompt = f"""
Given this sales data:
{sales_data}
Please:
- Calculate the growth rate
- Identify trends
- Make recommendations for Q1 next year """
analysis = mind.generate(prompt)
print(analysis)
What's Different Here:
┌─────────────────────────────────────┐
│ Phi Model (Previous Example) │
│ • Loads in ~3 seconds │
│ • Responds in ~2 seconds │
│ • Good for general questions │
└─────────────────────────────────────┘
┌─────────────────────────────────────┐
│ Qwen Model (This Example) │
│ • Loads in ~5 seconds │
│ • Responds in ~5-15 seconds │
│ • Better analysis and reasoning │
└─────────────────────────────────────┘
Using Mind's Built-In Studios
Comic Studio: Complete Content Creation Pipeline
from mind.agents.comic_studio import ComicStudio
Initialize the studio (4 agents working together)
studio = ComicStudio()
Create a comic - Mind handles EVERYTHING
comic = studio.create_comic(
theme="space adventure",
target_audience="teens",
pages=8
)
print(f"Comic created: {comic.title}")
print(f"Story: {comic.story_summary}")
print(f"Visual concepts: {comic.art_concepts}")
Behind The Scenes:
YOU: "Create a space adventure comic"
↓
┌──────────────────────────────────────┐
│ MIND'S AGENT ORCHESTRA │
├──────────────────────────────────────┤
│ │
│ [Market Analyst Agent] │
│ ↓ Researches trends │
│ ↓ Identifies audience preferences │
│ ↓ Suggests themes │
│ │
│ [Story Writer Agent] │
│ ↓ Receives market insights │
│ ↓ Creates plot and dialogue │
│ ↓ Develops characters │
│ │
│ [Concept Designer Agent] │
│ ↓ Receives story │
│ ↓ Creates visual descriptions │
│ ↓ Designs panel layouts │
│ │
│ [Quality Check Agent] │
│ ↓ Reviews everything │
│ ↓ Checks consistency │
│ ↓ Suggests improvements │
│ │
│ Final Comic Package → │
└──────────────────────────────────────┘
Time: ~60-90 seconds for complete comic planning
Using Mind's CLI (Command Line Interface)
# Ask Mind anything directly
mind ask "What are the best practices for API design?"
# Analyze a file
mind analyze data.csv --type statistical
# Get help with specific topics
mind help python-async
# Create learning materials
mind learn "machine learning basics" --format tutorial
Visual CLI Flow:
Terminal Input → Mind CLI Parser → Agent Selection
↓
Task Execution
↓
Formatted Output
↓
Your Terminal
Advanced: Creating Custom Autonomous Systems
Mind can create entire new systems autonomously:
# Use Mind's system generator
mind systems create \
--name "CustomerServiceBot" \
--goal "Handle customer inquiries 24/7" \
--features "nlp,sentiment-analysis,ticket-routing" \
--type agent-cluster
What Mind Does Automatically:
1. Creates new Git repository
└─ /autonomous_systems/CustomerServiceBot/
2. Generates folder structure:
CustomerServiceBot/
├── agents/
│ ├── inquiry_handler.py
│ ├── sentiment_analyzer.py
│ └── ticket_router.py
├── config/
│ └── system_config.yaml
├── tests/
│ └── test_agents.py
├── docs/
│ └── README.md
└── main.py
3. Writes all the code
4. Creates documentation
5. Sets up testing
6. Registers in Mind's system registry
Time: ~30-45 seconds to generate complete system
Real-World Example: Complete Workflow
Let's say you want Mind to help you with a business report:
from mind.cognition import init_llm
from mind.agents import AnalystAgent, WriterAgent, DesignerAgent
# Initialize Mind
mind = init_llm(model="qwen")
# Load your data
with open("sales_data.json") as f:
data = f.read()
# Step 1: Analysis
analyst = AnalystAgent(mind)
insights = analyst.analyze(data, focus="trends,risks,opportunities")
# Step 2: Writing
writer = WriterAgent(mind)
report = writer.create_report(
data=insights,
style="executive",
length="comprehensive"
)
# Step 3: Visualization
designer = DesignerAgent(mind)
visuals = designer.create_charts(
data=insights,
types=["trend_lines", "comparison_bars"]
)
# Combine and save
final_report = {
"analysis": insights,
"narrative": report,
"visualizations": visuals
}
# Mind can also export to PDF, PowerPoint, etc.
Timeline:
00:00 - Start script
00:03 - Models loaded
00:15 - Analysis complete (AnalystAgent)
00:35 - Report written (WriterAgent)
00:50 - Visuals generated (DesignerAgent)
00:52 - Combined and saved
Total: ~1 minute for complete business report
Understanding Mind's Memory System
Mind remembers and learns:
from mind.memory import FileBasedMemory
# Initialize memory
memory = FileBasedMemory()
# Mind automatically stores:
# 1. Successful workflows
memory.store("workflow", {
"task": "data_analysis",
"approach": "statistical_summary",
"success_rate": 0.95
})
# 2. User preferences
memory.store("preference", {
"user": "you",
"likes": ["detailed_explanations", "visual_charts"]
})
# 3. Learned patterns
memory.store("pattern", {
"when": "analyzing_sales",
"best_model": "qwen",
"best_prompts": ["Compare quarter over quarter..."]
})
# Retrieve later
next_time = memory.retrieve("workflow", task="data_analysis")
# Mind now knows the best approach!
Memory Structure:
~/.mind/
├── memory/
│ ├── workflows/
│ │ └── successful_patterns.json
│ ├── preferences/
│ │ └── user_settings.json
│ └── learned/
│ └── optimization_data.json
├── models/
│ ├── phi-3/
│ └── qwen-2.5/
└── systems/
└── generated_systems.registry
Monitoring Mind's Activity
Mind provides real-time insights:
from mind.monitoring import ActivityMonitor
monitor = ActivityMonitor()
# See what Mind is doing
status = monitor.get_status()
print(f"Active agents: {status.active_agents}")
print(f"Current task: {status.current_task}")
print(f"Progress: {status.progress}%")
# Performance metrics
metrics = monitor.get_metrics()
print(f"Tasks completed today: {metrics.tasks_completed}")
print(f"Average response time: {metrics.avg_response_time}s")
print(f"Success rate: {metrics.success_rate}%")
Dashboard View:
┌─────────────────────────────────────────┐
│ MIND SYSTEM STATUS │
├─────────────────────────────────────────┤
│ Active Model: Qwen-2.5 │
│ Memory Usage: 8.2 GB / 16 GB │
│ Active Agents: 3 │
│ └─ AnalystAgent (processing...) │
│ └─ WriterAgent (waiting) │
│ └─ QualityAgent (idle) │
│ │
│ Current Task: Business Report │
│ Progress: ████████░░ 75% │
│ Est. Completion: 15 seconds │
│ │
│ Today's Stats: │
│ Tasks: 47 completed, 2 failed │
│ Uptime: 3h 24m │
│ Success Rate: 95.9% │
└─────────────────────────────────────────┘
Quick Start Checklist
□ 1. Clone repository (1 minute)
git clone https://github.com/camilo060285/Mind.git
□ 2. Create environment (2 minutes)
python -m venv venv && source venv/bin/activate
□ 3. Install Mind (3-5 minutes)
pip install -e .
□ 4. Download models (5-30 minutes, one-time)
# Happens automatically on first use
□ 5. Run first script (30 seconds)
python examples/simple_query.py
✓ YOU'RE READY TO USE MIND!
Pro Tips for Getting Started
Tip 1: Start Small
# Don't start with complex multi-agent systems
# Begin with simple queries:
mind = init_llm(model="phi")
result = mind.generate("Explain this concept...")
Tip 2: Use the Right Model
# Quick tasks → Phi (fast)
phi_mind = init_llm(model="phi")
# Complex reasoning → Qwen (thoughtful)
qwen_mind = init_llm(model="qwen")
Tip 3: Leverage Examples
Mind comes with examples for:
- Simple queries (examples/simple_query.py)
- Data analysis (examples/data_analysis.py)
- Comic creation (examples/comic_studio_demo.py)
- System generation (examples/system_generation_example.py)
Run them to learn!
Tip 4: Check the Logs
# Mind logs everything
import logging
logging.basicConfig(level=logging.INFO)
# Now you'll see what Mind is doing
Your First Day Roadmap
Morning (30 minutes):
Install Mind (follow checklist above)
Run examples/simple_query.py
Modify it to ask your own questions
Afternoon (1 hour):
Try the CLI: mind ask "your question"
Analyze some of your own data
Explore the Comic Studio
Evening (1 hour):
Create a custom agent for your use case
Set up a simple workflow
Review what Mind learned in memory
By end of day: You'll have Mind fully operational and understand how to use it for real work!
When You Get Stuck
1. Check the docs: docs/ folder
2. Look at examples: examples/ folder
3. Read the code: src/mind/ (it's well-commented!)
4. Check logs: ~/.mind/logs/
5. GitHub Issues: Report bugs or ask questions
The most important thing: Mind is designed to be exploratory. Try things, break things, learn! It's running locally—you can't break anything permanently.
Top comments (0)