From Zero to Production in Your Chosen Language
BitDT's multi-language support makes it accessible across your entire tech stack. This comprehensive guide walks through implementation strategies for Java, TypeScript, and Python environments.
Assessment: When to Use BitDT
Ideal Use Cases:
· High-volume timestamp storage (databases, logs)
· Network payload optimization (APIs, microservices)
· Memory-constrained environments (mobile, IoT)
· Time-series data applications
· Bulk date-time operations
Consider Alternatives When:
· Human readability is paramount
· Library size constraints exceed benefits
· Date ranges outside 50,000 BCE - 176,980 CE
· Sub-millisecond precision required
Java Implementation
Setup and Integration
Option 1: Source Integration
git clone https://github.com/Danexcodr/BitDT.git
cp -r BitDT/java/src/main/java/danexcodr/time/ your-project/src/main/java/
Option 2: Maven/Gradle Ready Structure
Ensure your project supports Java 7+and add the source files to your build path.
Basic Usage Patterns
Database Entity Integration
@Entity
public class Event {
@Id
private Long id;
@Column(length = 15)
private String compactTimestamp;
private String data;
public void setTimestamp(Instant instant, ZoneId zoneId) {
ZonedDateTime zdt = instant.atZone(zoneId);
this.compactTimestamp = BitDT.fromPrimitives(
BitDT.fromAbsoluteYear(zdt.getYear()),
zdt.getMonthValue() - 1,
zdt.getDayOfMonth(),
zdt.getHour(),
zdt.getMinute(),
zdt.getSecond(),
zdt.get(ChronoField.MILLI_OF_SECOND),
zoneId.getId()
).encode();
}
public Instant getTimestamp() {
BitDT bitdt = BitDT.decode(compactTimestamp);
// Convert back to Instant using BitDTEpoch utilities
return Instant.ofEpochMilli(BitDTEpoch.fromBitDT(compactTimestamp));
}
}
Bulk Processing Optimization
public class EventProcessor {
public void processEvents(List<Event> events) {
// Convert to BitDTArray for efficient operations
List<BitDT> bitdts = events.stream()
.map(event -> BitDT.decode(event.getCompactTimestamp()))
.collect(Collectors.toList());
BitDTArray dateArray = BitDTArray.fromList(bitdts);
// Efficient sorting and filtering
BitDTArray sorted = dateArray.sorted();
BitDTArray recent = dateArray.filterByType(BitDT.TYPE_FULL);
// Process in optimized order
for (int i = 0; i < sorted.size(); i++) {
processEvent(sorted.get(i));
}
}
}
Performance Optimization
Database Indexing Strategy
-- Traditional timestamp indexing
CREATE INDEX idx_events_created_at ON events(created_at);
-- BitDT compact indexing (smaller, faster)
CREATE INDEX idx_events_bitdt ON events(compact_timestamp);
Memory Management
// Reuse BitDT instances for frequently accessed dates
private final Map<String, BitDT> dateCache = new ConcurrentHashMap<>();
public BitDT getCachedBitDT(String encoded) {
return dateCache.computeIfAbsent(encoded, BitDT::decode);
}
TypeScript/JavaScript Implementation
Project Integration
Node.js Setup
git clone https://github.com/Danexcodr/BitDT.git
cp -r BitDT/typescript/src/ your-project/src/bitdt/
Browser Integration
<script src="bitdt/BitDT.js"></script>
<script>
// Available globally as BitDT
const compactDate = BitDT.fromPrimitives(...);
</script>
Modern Framework Usage
React Component Integration
import { BitDT, BitDTEpoch } from './bitdt/BitDT';
interface EventLog {
id: string;
compactTime: string;
message: string;
}
const EventList: React.FC<{ events: EventLog[] }> = ({ events }) => {
const sortedEvents = React.useMemo(() => {
return [...events].sort((a, b) => {
const dtA = BitDT.decode(a.compactTime);
const dtB = BitDT.decode(b.compactTime);
return dtA.compareTo(dtB);
});
}, [events]);
return (
<div>
{sortedEvents.map(event => (
<EventItem key={event.id} event={event} />
))}
</div>
);
};
API Response Optimization
// Express.js middleware for response compression
import { BitDT, BitDTEpoch } from './bitdt/BitDT';
function bitdtMiddleware(req: Request, res: Response, next: NextFunction) {
const originalSend = res.send;
res.send = function(data: any) {
if (typeof data === 'object' && data.timestamps) {
// Compress timestamps in response
data.timestamps = data.timestamps.map((ts: string) => {
const epoch = new Date(ts).getTime();
return BitDTEpoch.toBitDT(epoch);
});
}
return originalSend.call(this, data);
};
next();
}
Performance Considerations
Bundle Size Optimization
// Tree-shaking friendly imports
import { BitDT } from './bitdt/BitDT';
import { BitDTEpoch } from './bitdt/BitDTEpoch';
// Versus (avoid if tree-shaking)
import * as BitDT from './bitdt';
Memory-Efficient Processing
// Stream processing for large datasets
async function processLargeDataset(events: Event[]) {
for (const event of events) {
const bitdt = BitDT.decode(event.compactTime);
if (bitdt.after(thresholdDate)) {
await processEvent(event);
}
}
}
Python Implementation
Integration Strategies
Django Model Integration
# models.py
from django.db import models
from bitdt import BitDT, BitDTEpoch
class SensorReading(models.Model):
compact_timestamp = models.CharField(max_length=15)
value = models.FloatField()
def set_timestamp(self, dt: datetime):
self.compact_timestamp = BitDT.from_primitives(
BitDT.from_absolute_year(dt.year),
dt.month - 1,
dt.day,
dt.hour,
dt.minute,
dt.second,
dt.microsecond // 1000,
str(dt.tzinfo) if dt.tzinfo else None
).encode()
def get_timestamp(self) -> datetime:
epoch_ms = BitDTEpoch.from_bit_dt(self.compact_timestamp)
return datetime.fromtimestamp(epoch_ms / 1000.0, tz=timezone.utc)
class Meta:
indexes = [
models.Index(fields=['compact_timestamp']),
]
Pandas DataFrames Optimization
import pandas as pd
import numpy as np
from bitdt import BitDT, BitDTArray
def optimize_dataframe(df: pd.DataFrame, timestamp_col: str) -> pd.DataFrame:
"""Convert datetime column to BitDT encoding"""
optimized = df.copy()
# Convert to BitDT encoded strings
optimized['bitdt_encoded'] = df[timestamp_col].apply(
lambda dt: BitDT.from_primitives(
BitDT.from_absolute_year(dt.year),
dt.month - 1,
dt.day,
dt.hour,
dt.minute,
dt.second,
dt.microsecond // 1000
).encode()
)
# Drop original column and use encoded version
optimized = optimized.drop(columns=[timestamp_col])
optimized = optimized.rename(columns={'bitdt_encoded': timestamp_col})
return optimized
def restore_dataframe(df: pd.DataFrame, timestamp_col: str) -> pd.DataFrame:
"""Restore BitDT encoded column to datetime"""
restored = df.copy()
restored['datetime'] = df[timestamp_col].apply(
lambda encoded: datetime.fromtimestamp(
BitDTEpoch.from_bit_dt(encoded) / 1000.0,
tz=timezone.utc
)
)
return restored
Performance Optimization
Database Optimization with SQLAlchemy
from sqlalchemy import TypeDecorator, String
from bitdt import BitDT
class BitDTType(TypeDecorator):
"""SQLAlchemy custom type for BitDT"""
impl = String(15)
def process_bind_param(self, value, dialect):
if isinstance(value, BitDT):
return value.encode()
return value
def process_result_value(self, value, dialect):
if value is not None:
return BitDT.decode(value)
return value
# Usage in model
class Event(Base):
__tablename__ = 'events'
id = Column(Integer, primary_key=True)
timestamp = Column(BitDTType)
data = Column(String)
Caching Strategy
from functools import lru_cache
from bitdt import BitDT
@lru_cache(maxsize=1000)
def cached_decode(encoded: str) -> BitDT:
return BitDT.decode(encoded)
@lru_cache(maxsize=1000)
def cached_encode(year: int, month: int, day: int,
hour: int, minute: int, second: int,
millis: int, timezone: str) -> str:
return BitDT.from_primitives(
year, month, day, hour, minute, second, millis, timezone
).encode()
Cross-Language Best Practices
Data Interchange
API Design
# Traditional API response
event:
id: 123
timestamp: "2024-03-15T14:30:45.123Z"
data: "..."
# BitDT optimized response
event:
id: 123
timestamp: "ABC123Xyz" # 70% smaller
data: "..."
Message Queue Optimization
# Kafka/RabbitMQ message format
{
"event_id": "evt_123",
"compact_ts": "ABC123Xyz+08", # Instead of ISO string
"payload": {...}
}
Testing Strategies
Comprehensive Test Suite
# test_bitdt_integration.py
import pytest
from datetime import datetime
from bitdt import BitDT, BitDTEpoch
class TestBitDTIntegration:
def test_round_trip_consistency(self):
original = datetime.now()
encoded = BitDTEpoch.to_bit_dt(int(original.timestamp() * 1000))
decoded_ms = BitDTEpoch.from_bit_dt(encoded)
decoded = datetime.fromtimestamp(decoded_ms / 1000.0)
# Allow 1ms tolerance for encoding/decoding
assert abs((original - decoded).total_seconds()) < 0.001
def test_cross_language_compatibility(self):
# Test vectors from Java/TypeScript implementations
test_cases = [
("ABC123Xyz", 1718323456789),
("DEF456Abc+08", 1718323456790),
]
for encoded, expected_epoch in test_cases:
result = BitDTEpoch.from_bit_dt(encoded)
assert result == expected_epoch
Monitoring and Metrics
Performance Tracking
# metrics.py
import time
from dataclasses import dataclass
@dataclass
class BitDTMetrics:
encode_operations: int = 0
decode_operations: int = 0
total_encode_time: float = 0.0
total_decode_time: float = 0.0
@property
def avg_encode_time(self) -> float:
return self.total_encode_time / max(1, self.encode_operations)
@property
def avg_decode_time(self) -> float:
return self.total_decode_time / max(1, self.decode_operations)
class InstrumentedBitDT:
def __init__(self):
self.metrics = BitDTMetrics()
def encode_with_metrics(self, *args, **kwargs) -> str:
start = time.time()
result = BitDT.from_primitives(*args, **kwargs).encode()
self.metrics.encode_operations += 1
self.metrics.total_encode_time += time.time() - start
return result
def decode_with_metrics(self, encoded: str) -> BitDT:
start = time.time()
result = BitDT.decode(encoded)
self.metrics.decode_operations += 1
self.metrics.total_decode_time += time.time() - start
return result
Migration Strategies
Gradual Adoption
Dual Storage Approach
-- During migration period
ALTER TABLE events ADD COLUMN compact_timestamp VARCHAR(15);
UPDATE events SET compact_timestamp =
-- Conversion logic here
;
-- Verify data integrity before dropping old column
Backward Compatibility
def get_timestamp(record, use_compact=True):
if use_compact and hasattr(record, 'compact_timestamp'):
return BitDT.decode(record.compact_timestamp)
else:
return parse_iso_string(record.iso_timestamp)
Conclusion
BitDT provides substantial storage and performance benefits across your entire stack. By following these implementation patterns, you can achieve consistent 60-80% reductions in date-time storage overhead while maintaining full functionality and cross-language compatibility.
Start with high-impact areas like database storage and API payloads, then gradually expand to other parts of your system as you validate the benefits in your specific use case.
Check the project repo now here.
Top comments (0)