In the last article I wrote a `time`

combinator which mimics the analogous Unix command: given an action `IO<A>`

, we can derive an action `IO<A>`

that prints to the console the elapsed time

```
import { IO, io } from 'fp-ts/lib/IO'
import { now } from 'fp-ts/lib/Date'
import { log } from 'fp-ts/lib/Console'
export function time<A>(ma: IO<A>): IO<A> {
return io.chain(now, start =>
io.chain(ma, a => io.chain(now, end => io.map(log(`Elapsed: ${end - start}`), () => a)))
)
}
```

There are two problems with this combinator though:

- is not flexible, i.e. consumers can't choose what to do with the elapsed time
- works with
`IO`

only

In this article we'll tackle the first problem.

## Adding flexibility by returning the elapsed time

Instead of always logging, we can return the elapsed time along with the computed value

```
export function time<A>(ma: IO<A>): IO<[A, number]> {
return io.chain(now, start => io.chain(ma, a => io.map(now, end => [a, end - start])))
}
```

Now a user can choose what to do with the elapsed time by defining its own combinators.

We could still log to the console...

```
export function withLogging<A>(ma: IO<A>): IO<A> {
return io.chain(time(ma), ([a, millis]) =>
io.map(log(`Result: ${a}, Elapsed: ${millis}`), () => a)
)
}
```

Usage

```
import { randomInt } from 'fp-ts/lib/Random'
function fib(n: number): number {
return n <= 1 ? 1 : fib(n - 1) + fib(n - 2)
}
const program = withLogging(io.map(randomInt(30, 35), fib))
program()
/*
Result: 14930352, Elapsed: 127
*/
```

...or just ignore the elapsed time...

```
export function ignoreSnd<A>(ma: IO<[A, unknown]>): IO<A> {
return io.map(ma, ([a]) => a)
}
```

...or, for example, only keep the fastest of a non empty list of actions

```
import { fold, getMeetSemigroup } from 'fp-ts/lib/Semigroup'
import { contramap, ordNumber } from 'fp-ts/lib/Ord'
import { getSemigroup } from 'fp-ts/lib/IO'
export function fastest<A>(head: IO<A>, tail: Array<IO<A>>): IO<A> {
const ordTuple = contramap(([_, elapsed]: [A, number]) => elapsed)(ordNumber)
const semigroupTuple = getMeetSemigroup(ordTuple)
const semigroupIO = getSemigroup(semigroupTuple)
const fastest = fold(semigroupIO)(time(head), tail.map(time))
return ignoreSnd(fastest)
}
```

Usage

```
io.chain(fastest(program, [program, program]), a => log(`Fastest result is: ${a}`))()
/*
Result: 5702887, Elapsed: 49
Result: 2178309, Elapsed: 20
Result: 5702887, Elapsed: 57
Fastest result is: 2178309
*/
```

In the next article we'll tackle the second problem by introducing a powerful style of programming: tagless final.

## Appendix

The implementation of `fastest`

is quite dense, let's see the relevant bits:

1) its signature ensures that we provide a non empty list of actions

```
// at least one action --v v--- possibly other actions
function fastest<A>(head: IO<A>, tail: Array<IO<A>>): IO<A>
```

2) `contramap`

is an `Ord`

combinator: given an instance of `Ord`

for `T`

and a function from `U`

to `T`

, we can derive an instance of `Ord`

for `U`

.

Here `T = number`

and `U = [A, number]`

```
// from `Ord<number>` to `Ord<[A, number]>`
const ordTuple = contramap(([_, elapsed]: [A, number]) => elapsed)(ordNumber)
```

3) `getMeetSemigroup`

transforms an instance of `Ord<T>`

into an instance of `Semigroup<T>`

which, when combining two values, returns the smaller

```
// from `Ord<[A, number]>` to `Semigroup<[A, number]>`
const semigroupTuple = getMeetSemigroup(ordTuple)
```

4) `getSemigroup`

is a `Semigroup`

combinator: given an instance of `Semigroup`

for `T`

, we can derive an instance of `Semigroup`

for `IO<T>`

```
// from `Semigroup<[A, number]>` to `Semigroup<IO<[A, number]>>`
const semigroupIO = getSemigroup(semigroupTuple)
```

5) `fold`

reduces a non empty list of actions using the provided `Semigroup`

```
// from a non empty list of `IO<[A, number]>` to `IO<[A, number]>`
const fastest = fold(semigroupIO)(time(head), tail.map(time))
```

6) finally we ignore the elapsed time and return just the value

```
// from `IO<[A, number]>` to `IO<A>`
return ignoreSnd(fastest)
```

## Discussion

Amazing article, thank you for sharing your knowledge!