all() can check if all the elements of a 0D or more D tensor are True
, getting the 0D or more D tensor of zero or more elements as shown below:
*Memos:
-
all()
can be used with torch or a tensor. - The 1st argument(
input
) withtorch
or using a tensor(Required-Type:tensor
ofint
,float
,complex
orbool
). - The 2nd argument with
torch
or the 1st argument with a tensor isdim
(Optional-Type:int
,tuple
ofint
orlist
ofint
). - The 3rd argument with
torch
or the 2nd argument with a tensor iskeepdim
(Optional-Default:False
-Type:bool
). *My post explainskeepdim
argument. - There is
out
argument withtorch
(Optional-Default:None
-Type:tensor
): *Memos:-
out=
must be used. -
My post explains
out
argument.
-
- An empty tensor returns a
True
of a 1D or more D tensor or an empty 1D or more D tensor.
import torch
my_tensor = torch.tensor(True)
torch.all(input=my_tensor)
my_tensor.all()
torch.all(input=my_tensor, dim=0)
torch.all(input=my_tensor, dim=-1)
torch.all(input=my_tensor, dim=(0,))
torch.all(input=my_tensor, dim=(-1,))
# tensor(True)
my_tensor = torch.tensor([True, False, True, False])
torch.all(input=my_tensor)
torch.all(input=my_tensor, dim=0)
torch.all(input=my_tensor, dim=-1)
torch.all(input=my_tensor, dim=(0,))
torch.all(input=my_tensor, dim=(-1,))
# tensor(False)
my_tensor = torch.tensor([[True, False, True, False],
[True, False, True, False]])
torch.all(input=my_tensor)
torch.all(input=my_tensor, dim=(0, 1))
torch.all(input=my_tensor, dim=(0, -1))
torch.all(input=my_tensor, dim=(1, 0))
torch.all(input=my_tensor, dim=(1, -2))
torch.all(input=my_tensor, dim=(-1, 0))
torch.all(input=my_tensor, dim=(-1, -2))
torch.all(input=my_tensor, dim=(-2, 1))
torch.all(input=my_tensor, dim=(-2, -1))
# tensor(False)
torch.all(input=my_tensor, dim=0)
torch.all(input=my_tensor, dim=(0,))
torch.all(input=my_tensor, dim=-2)
# tensor([True, False, True, False])
torch.all(input=my_tensor, dim=1)
torch.all(input=my_tensor, dim=-1)
torch.all(input=my_tensor, dim=(-1,))
# tensor([False, False])
my_tensor = torch.tensor([[0, 1, 2, 3],
[4, 5, 6, 7]])
torch.all(input=my_tensor)
# tensor(False)
my_tensor = torch.tensor([[0., 1., 2., 3.],
[4., 5., 6., 7.]])
torch.all(input=my_tensor)
# tensor(False)
my_tensor = torch.tensor([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j],
[4.+0.j, 5.+0.j, 6.+0.j, 7.+0.j]])
torch.all(input=my_tensor)
# tensor(False)
my_tensor = torch.tensor([[]])
torch.all(input=my_tensor)
# tensor(True)
torch.all(input=my_tensor, dim=0)
torch.all(input=my_tensor, dim=-2)
# tensor([], dtype=torch.bool)
torch.all(input=my_tensor, dim=1)
torch.all(input=my_tensor, dim=-1)
# tensor([True])
any() can check if any elements of a 0D or more D tensor are True
, getting the 0D or more D tensor of zero or more elements as shown below:
*Memos:
-
any()
can be used withtorch
or a tensor. - The 1st argument(
input
) withtorch
or using a tensor(Required-Type:tensor
ofint
,float
,complex
orbool
). - The 2nd argument with
torch
or the 1st argument with a tensor isdim
(Optional-Type:int
,tuple
ofint
orlist
ofint
). - The 3rd argument with
torch
or the 2nd argument with a tensor iskeepdim
(Optional-Default:False
-Type:bool
). *My post explainskeepdim
argument. - There is
out
argument withtorch
(Optional-Default:None
-Type:tensor
): *Memos:-
out=
must be used. -
My post explains
out
argument.
-
- An empty tensor returns a
False
of a 1D or more D tensor or an empty 1D or more D tensor.
import torch
my_tensor = torch.tensor(True)
torch.any(input=my_tensor)
my_tensor.any()
torch.any(input=my_tensor, dim=0)
torch.any(input=my_tensor, dim=-1)
torch.any(input=my_tensor, dim=(0,))
torch.any(input=my_tensor, dim=(-1,))
# tensor(True)
torch.any(input=my_tensor, dim=0, keepdim=True)
# tensor(True)
my_tensor = torch.tensor([True, False, True, False])
torch.any(input=my_tensor)
torch.any(input=my_tensor, dim=0)
torch.any(input=my_tensor, dim=-1)
torch.any(input=my_tensor, dim=(0,))
torch.any(input=my_tensor, dim=(-1,))
# tensor(True)
torch.any(input=my_tensor, dim=0, keepdim=True)
# tensor([True])
my_tensor = torch.tensor([[True, False, True, False],
[True, False, True, False]])
torch.any(input=my_tensor)
torch.any(input=my_tensor, dim=(0, 1))
torch.any(input=my_tensor, dim=(0, -1))
torch.any(input=my_tensor, dim=(1, 0))
torch.any(input=my_tensor, dim=(1, -2))
torch.any(input=my_tensor, dim=(-1, 0))
torch.any(input=my_tensor, dim=(-1, -2))
torch.any(input=my_tensor, dim=(-2, 1))
torch.any(input=my_tensor, dim=(-2, -1))
# tensor(True)
torch.any(input=my_tensor, dim=0)
torch.any(input=my_tensor, dim=(0,))
torch.any(input=my_tensor, dim=-2)
# tensor([True, False, True, False])
torch.any(input=my_tensor, dim=1)
torch.any(input=my_tensor, dim=-1)
torch.any(input=my_tensor, dim=(-1,))
# tensor([True, True])
torch.any(input=my_tensor, dim=0, keepdim=True)
# tensor([[True, False, True, False]])
my_tensor = torch.tensor([[0, 1, 2, 3],
[4, 5, 6, 7]])
torch.any(input=my_tensor)
# tensor(True)
my_tensor = torch.tensor([[0., 1., 2., 3.],
[4., 5., 6., 7.]])
torch.any(input=my_tensor)
# tensor(True)
my_tensor = torch.tensor([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j],
[4.+0.j, 5.+0.j, 6.+0.j, 7.+0.j]])
torch.any(input=my_tensor)
# tensor(True)
my_tensor = torch.tensor([[]])
torch.any(input=my_tensor)
# tensor(False)
torch.any(input=my_tensor, dim=0)
torch.any(input=my_tensor, dim=-2)
# tensor([], dtype=torch.bool)
torch.any(input=my_tensor, dim=1)
torch.any(input=my_tensor, dim=-1)
# tensor([False])
Top comments (0)