*Memos:
-
My post explains AugMix() about no arguments and
full
argument. -
My post explains AugMix() about
severity
argument (1). -
My post explains AugMix() about
severity
argument (2).
AugMix() can randomly do AugMix to an image as shown below. *It's about mixture_width
argument (1):
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import AugMix
from torchvision.transforms.functional import InterpolationMode
origin_data = OxfordIIITPet(
root="data",
transform=None
)
mw0_data = OxfordIIITPet( # `mw` is mixture_width.
root="data",
transform=AugMix(mixture_width=0)
)
mw1_data = OxfordIIITPet(
root="data",
transform=AugMix(mixture_width=1)
)
mw2_data = OxfordIIITPet(
root="data",
transform=AugMix(mixture_width=2)
)
mw5_data = OxfordIIITPet(
root="data",
transform=AugMix(mixture_width=5)
)
mw10_data = OxfordIIITPet(
root="data",
transform=AugMix(mixture_width=10)
)
mw25_data = OxfordIIITPet(
root="data",
transform=AugMix(mixture_width=25)
)
mw50_data = OxfordIIITPet(
root="data",
transform=AugMix(mixture_width=50)
)
s10mw0_data = OxfordIIITPet( # `s` is severity.
root="data",
transform=AugMix(severity=10, mixture_width=0)
)
s10mw1_data = OxfordIIITPet(
root="data",
transform=AugMix(severity=10, mixture_width=1)
)
s10mw2_data = OxfordIIITPet(
root="data",
transform=AugMix(severity=10, mixture_width=2)
)
s10mw5_data = OxfordIIITPet(
root="data",
transform=AugMix(severity=10, mixture_width=5)
)
s10mw10_data = OxfordIIITPet(
root="data",
transform=AugMix(severity=10, mixture_width=10)
)
s10mw25_data = OxfordIIITPet(
root="data",
transform=AugMix(severity=10, mixture_width=25)
)
s10mw50_data = OxfordIIITPet(
root="data",
transform=AugMix(severity=10, mixture_width=50)
)
mw0cd50_data = OxfordIIITPet( # `cd` is chain_depth.
root="data",
transform=AugMix(mixture_width=0, chain_depth=50)
)
mw1cd50_data = OxfordIIITPet(
root="data",
transform=AugMix(mixture_width=1, chain_depth=50)
)
mw2cd50_data = OxfordIIITPet(
root="data",
transform=AugMix(mixture_width=2, chain_depth=50)
)
mw5cd50_data = OxfordIIITPet(
root="data",
transform=AugMix(mixture_width=5, chain_depth=50)
)
mw10cd50_data = OxfordIIITPet(
root="data",
transform=AugMix(mixture_width=10, chain_depth=50)
)
mw25cd50_data = OxfordIIITPet(
root="data",
transform=AugMix(mixture_width=25, chain_depth=50)
)
mw50cd50_data = OxfordIIITPet(
root="data",
transform=AugMix(mixture_width=50, chain_depth=50)
)
import matplotlib.pyplot as plt
def show_images1(data, main_title=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=mw0_data, main_title="mw0_data")
show_images1(data=mw1_data, main_title="mw1_data")
show_images1(data=mw2_data, main_title="mw2_data")
show_images1(data=mw5_data, main_title="mw5_data")
show_images1(data=mw10_data, main_title="mw10_data")
show_images1(data=mw25_data, main_title="mw25_data")
show_images1(data=mw50_data, main_title="mw50_data")
print()
show_images1(data=s10mw0_data, main_title="s10mw0_data")
show_images1(data=s10mw1_data, main_title="s10mw1_data")
show_images1(data=s10mw2_data, main_title="s10mw2_data")
show_images1(data=s10mw5_data, main_title="s10mw5_data")
show_images1(data=s10mw10_data, main_title="s10mw10_data")
show_images1(data=s10mw25_data, main_title="s10mw25_data")
show_images1(data=s10mw50_data, main_title="s10mw50_data")
print()
show_images1(data=mw0cd50_data, main_title="mw0cd50_data")
show_images1(data=mw1cd50_data, main_title="mw1cd50_data")
show_images1(data=mw2cd50_data, main_title="mw2cd50_data")
show_images1(data=mw5cd50_data, main_title="mw5cd50_data")
show_images1(data=mw10cd50_data, main_title="mw10cd50_data")
show_images1(data=mw25cd50_data, main_title="mw25cd50_data")
show_images1(data=mw50cd50_data, main_title="mw50cd50_data")
# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, s=3, mw=3, cd=-1, a=1.0,
ao=True, ip=InterpolationMode.BILINEAR, f=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
if main_title != "origin_data":
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
am = AugMix(severity=s, mixture_width=mw, chain_depth=cd,
alpha=a, all_ops=ao, interpolation=ip, fill=f)
plt.imshow(X=am(im))
plt.xticks(ticks=[])
plt.yticks(ticks=[])
else:
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="mw0_data", mw=0)
show_images2(data=origin_data, main_title="mw1_data", mw=1)
show_images2(data=origin_data, main_title="mw2_data", mw=2)
show_images2(data=origin_data, main_title="mw5_data", mw=5)
show_images2(data=origin_data, main_title="mw10_data", mw=10)
show_images2(data=origin_data, main_title="mw25_data", mw=25)
show_images2(data=origin_data, main_title="mw50_data", mw=50)
print()
show_images2(data=origin_data, main_title="s10mw0_data", s=10, mw=0)
show_images2(data=origin_data, main_title="s10mw1_data", s=10, mw=1)
show_images2(data=origin_data, main_title="s10mw2_data", s=10, mw=2)
show_images2(data=origin_data, main_title="s10mw5_data", s=10, mw=5)
show_images2(data=origin_data, main_title="s10mw10_data", s=10, mw=10)
show_images2(data=origin_data, main_title="s10mw25_data", s=10, mw=25)
show_images2(data=origin_data, main_title="s10mw50_data", s=10, mw=50)
print()
show_images2(data=origin_data, main_title="mw0cd50_data", mw=0, cd=50)
show_images2(data=origin_data, main_title="mw1cd50_data", mw=1, cd=50)
show_images2(data=origin_data, main_title="mw2cd50_data", mw=2, cd=50)
show_images2(data=origin_data, main_title="mw5cd50_data", mw=5, cd=50)
show_images2(data=origin_data, main_title="mw10cd50_data", mw=10, cd=50)
show_images2(data=origin_data, main_title="mw25cd50_data", mw=25, cd=50)
show_images2(data=origin_data, main_title="mw50cd50_data", mw=50, cd=50)
Top comments (0)