DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

AvgPool1d in PyTorch

Buy Me a Coffee

*Memos:

AvgPool1d() can get the 2D or 3D tensor of the one or more elements computed by 1D average pooling from the 2D or 3D tensor of one or more elements as shown below:

*Memos:

  • The 1st argument for initialization is kernel_size(Required-Type:int or tuple or list of int). *It must be 1 <= x.
  • The 2nd argument for initialization is stride(Optional-Default:None-Type:int or tuple or list of int): *Memos:
    • It must be 1 <= x.
    • If it's None, kernel_size is set.
  • The 3rd argument for initialization is padding(Optional-Default:0-Type:int or tuple or list of int). *It must be 0 <= x.
  • The 4th argument for initialization is ceil_mode(Optional-Default:False-Type:bool).
  • The 5th argument for initialization is count_include_pad(Optional-Default:True-Type:bool).
  • The 1st argument is input(Required-Type:tensor of int or float): *Memos:
    • It must be the 2D or 3D tensor of one or more elements.
    • The tensor's requires_grad which is False by default is not set to True by AvgPool1d().
import torch
from torch import nn

tensor1 = torch.tensor([[8., -3., 0., 1., 5., -2.]])

tensor1.requires_grad
# False

avgpool1d = nn.AvgPool1d(kernel_size=1)
tensor2 = avgpool1d(input=tensor1)
tensor2
# tensor([[8., -3., 0., 1., 5., -2.]])

tensor2.requires_grad
# False

avgpool1d
# AvgPool1d(kernel_size=(1,), stride=(1,), padding=(0,))

avgpool1d.kernel_size
# (1,)

avgpool1d.stride
# (1,)

avgpool1d.padding
# (0,)

avgpool1d.ceil_mode
# False

avgpool1d.count_include_pad
# True

avgpool1d = nn.AvgPool1d(kernel_size=1, stride=None, padding=0, 
                         ceil_mode=False, count_include_pad=True)
avgpool1d(input=tensor1)
# tensor([[8., -3., 0., 1., 5., -2.]])

avgpool1d = nn.AvgPool1d(kernel_size=2)
avgpool1d(input=tensor1)
# tensor([[2.5000, 0.5000, 1.5000]])

avgpool1d = nn.AvgPool1d(kernel_size=3)
avgpool1d(input=tensor1)
# tensor([[1.6667, 1.3333]])

avgpool1d = nn.AvgPool1d(kernel_size=4)
avgpool1d(input=tensor1)
# tensor([[1.5000]])

avgpool1d = nn.AvgPool1d(kernel_size=5)
avgpool1d(input=tensor1)
# tensor([[2.2000]])

avgpool1d = nn.AvgPool1d(kernel_size=6)
avgpool1d(input=tensor1)
# tensor([[1.5000]])

my_tensor = torch.tensor([[8., -3., 0.],
                          [1., 5., -2.]])
avgpool1d = nn.AvgPool1d(kernel_size=1)
avgpool1d(input=my_tensor)
# tensor([[8., -3., 0.],
#         [1., 5., -2.]])

avgpool1d = nn.AvgPool1d(kernel_size=2)
avgpool1d(input=my_tensor)
# tensor([[2.5000],
#         [3.0000]])

avgpool1d = nn.AvgPool1d(kernel_size=3)
avgpool1d(input=my_tensor)
# tensor([[1.6667],
#         [1.3333]])

my_tensor = torch.tensor([[8.], [-3.], [0.], [1.], [5.], [-2.]])

avgpool1d = nn.AvgPool1d(kernel_size=1)
avgpool1d(input=my_tensor)
# tensor([[8.], [-3.], [0.], [1.], [5.], [-2.]])

avgpool1d = nn.AvgPool1d(kernel_size=2, padding=1)
avgpool1d(input=my_tensor)
# tensor([[4.0000], [-1.5000], [0.0000], [0.5000], [2.5000], [-1.0000]])

avgpool1d = nn.AvgPool1d(kernel_size=3, padding=1)
avgpool1d(input=my_tensor)
# tensor([[2.6667], [-1.0000], [0.0000], [0.3333], [1.6667], [-0.6667]])

avgpool1d = nn.AvgPool1d(kernel_size=4, padding=2)
avgpool1d(input=my_tensor)
# tensor([[2.0000], [-0.7500], [0.0000], [0.2500], [1.2500], [-0.5000]])

avgpool1d = nn.AvgPool1d(kernel_size=5, padding=2)
avgpool1d(input=my_tensor)
# tensor([[1.6000], [-0.6000], [0.0000], [0.2000], [1.0000], [-0.4000]])
etc.

my_tensor = torch.tensor([[[8.], [-3.], [0.]],
                          [[1.], [5.], [-2.]]])
avgpool1d = nn.AvgPool1d(kernel_size=1)
avgpool1d(input=my_tensor)
# tensor([[[8.], [-3.], [0.]],
#         [[1.], [5.], [-2.]]])

avgpool1d = nn.AvgPool1d(kernel_size=2, padding=1)
avgpool1d(input=my_tensor)
# tensor([[[4.0000], [-1.5000], [0.0000]],
#         [[0.5000], [2.5000], [-1.0000]]])

avgpool1d = nn.AvgPool1d(kernel_size=3, padding=1)
avgpool1d(input=my_tensor)
# tensor([[[2.6667], [-1.0000], [0.0000]],
#         [[0.3333], [1.6667], [-0.6667]]])

avgpool1d = nn.AvgPool1d(kernel_size=4, padding=2)
avgpool1d(input=my_tensor)
# tensor([[[2.0000], [-0.7500], [0.0000]],
#         [[0.2500], [1.2500], [-0.5000]]])

avgpool1d = nn.AvgPool1d(kernel_size=5, padding=2)
avgpool1d(input=my_tensor)
# tensor([[[1.6000], [-0.6000], [0.0000]],
#         [[0.2000], [1.0000], [-0.4000]]])
etc.

my_tensor = torch.tensor([[[8], [-3], [0]],
                          [[1], [5], [-2]]])
avgpool1d = nn.AvgPool1d(kernel_size=1)
avgpool1d(input=my_tensor)
# tensor([[[8], [-3], [0]],
#         [[1], [5], [-2]]])
Enter fullscreen mode Exit fullscreen mode

Image of Datadog

The Future of AI, LLMs, and Observability on Google Cloud

Datadog sat down with Google’s Director of AI to discuss the current and future states of AI, ML, and LLMs on Google Cloud. Discover 7 key insights for technical leaders, covering everything from upskilling teams to observability best practices

Learn More

Top comments (0)

Sentry image

See why 4M developers consider Sentry, “not bad.”

Fixing code doesn’t have to be the worst part of your day. Learn how Sentry can help.

Learn more

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay