*Memos:
- 
My post explains CocoCaptions() using train2014withcaptions_train2014.json,instances_train2014.jsonandperson_keypoints_train2014.json,val2014withcaptions_val2014.json,instances_val2014.jsonandperson_keypoints_val2014.jsonandtest2017withimage_info_test2014.json,image_info_test2015.jsonandimage_info_test-dev2015.json.
- 
My post explains CocoCaptions() using train2017withcaptions_train2017.json,instances_train2017.jsonandperson_keypoints_train2017.json,val2017withcaptions_val2017.json,instances_val2017.jsonandperson_keypoints_val2017.jsonandtest2017withimage_info_test2017.jsonandimage_info_test-dev2017.json.
- 
My post explains CocoDetection() using train2014withcaptions_train2014.json,instances_train2014.jsonandperson_keypoints_train2014.json,val2014withcaptions_val2014.json,instances_val2014.jsonandperson_keypoints_val2014.jsonandtest2017withimage_info_test2014.json,image_info_test2015.jsonandimage_info_test-dev2015.json.
- 
My post explains CocoDetection() using train2017withcaptions_train2017.json,instances_train2017.jsonandperson_keypoints_train2017.json,val2017withcaptions_val2017.json,instances_val2017.jsonandperson_keypoints_val2017.jsonandtest2017withimage_info_test2017.jsonandimage_info_test-dev2017.json.
- 
My post explains CocoDetection() using train2017withstuff_train2017.json,val2017withstuff_val2017.json,stuff_train2017_pixelmapswithstuff_train2017.json,stuff_val2017_pixelmapswithstuff_val2017.json,panoptic_train2017withpanoptic_train2017.json,panoptic_val2017withpanoptic_val2017.jsonandunlabeled2017withimage_info_unlabeled2017.json.
- My post explains MS COCO.
CocoCaptions() can use MS COCO dataset as shown below. *This is for train2017 with stuff_train2017.json, val2017 with stuff_val2017.json, stuff_train2017_pixelmaps with stuff_train2017.json, stuff_val2017_pixelmaps with stuff_val2017.json, panoptic_train2017 with panoptic_train2017.json, panoptic_val2017 with panoptic_val2017.json and unlabeled2017 with image_info_unlabeled2017.json:
from torchvision.datasets import CocoCaptions
stf_train2017_data = CocoCaptions(
    root="data/coco/imgs/train2017",
    annFile="data/coco/anns/stuff_trainval2017/stuff_train2017.json"
)
stf_val2017_data = CocoCaptions(
    root="data/coco/imgs/val2017",
    annFile="data/coco/anns/stuff_trainval2017/stuff_val2017.json"
)
len(stf_train2017_data), len(stf_val2017_data)
# (118287, 5000)
pms_stf_train2017_data = CocoCaptions(
    root="data/coco/anns/stuff_trainval2017/stuff_train2017_pixelmaps",
    annFile="data/coco/anns/stuff_trainval2017/stuff_train2017.json"
)
pms_stf_val2017_data = CocoCaptions(
    root="data/coco/anns/stuff_trainval2017/stuff_val2017_pixelmaps",
    annFile="data/coco/anns/stuff_trainval2017/stuff_val2017.json"
)
len(pms_stf_train2017_data), len(pms_stf_val2017_data)
# (118287, 5000)
# pan_train2017_data = CocoCaptions(
#     root="data/coco/anns/panoptic_trainval2017/panoptic_train2017",
#     annFile="data/coco/anns/panoptic_trainval2017/panoptic_train2017.json"
# ) # Error
# pan_val2017_data = CocoCaptions(
#     root="data/coco/anns/panoptic_trainval2017/panoptic_val2017",
#     annFile="data/coco/anns/panoptic_trainval2017/panoptic_val2017.json"
# ) # Error
unlabeled2017_data = CocoCaptions(
    root="data/coco/imgs/unlabeled2017",
    annFile="data/coco/anns/unlabeled2017/image_info_unlabeled2017.json"
)
len(unlabeled2017_data)
# 123403
stf_train2017_data[2] # Error
stf_train2017_data[47] # Error
stf_train2017_data[64] # Error
stf_val2017_data[2] # Error
stf_val2017_data[47] # Error
stf_val2017_data[64] # Error
pms_stf_train2017_data[2] # Error
pms_stf_train2017_data[47] # Error
pms_stf_train2017_data[64] # Error
pms_stf_val2017_data[2] # Error
pms_stf_val2017_data[47] # Error
pms_stf_val2017_data[64] # Error
unlabeled2017_data[2]
# (<PIL.Image.Image image mode=RGB size=640x427>, [])
unlabeled2017_data[47]
# (<PIL.Image.Image image mode=RGB size=428x640>, [])
unlabeled2017_data[64]
# (<PIL.Image.Image image mode=RGB size=640x480>, [])
import matplotlib.pyplot as plt
def show_images(data, ims, main_title=None):
    file = data.root.split('/')[-1]
    fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 8))
    fig.suptitle(t=main_title, y=0.9, fontsize=14)
    for i, axis in zip(ims, axes.ravel()):
        if not data[i][1]:
            im, _ = data[i]
            axis.imshow(X=im)
    fig.tight_layout()
    plt.show()
ims = (2, 47, 64)
show_images(data=unlabeled2017_data, ims=ims,
            main_title="unlabeled2017_data")
 


 
    
Top comments (0)