DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

gcd and lcm in PyTorch

Buy Me a Coffee

*Memos:

gcd() can get the 0D or more D tensor of zero or more greatest common divisors from two of the 0D or more D tensors of zero or more elements as shown below:

*Memos:

  • gcd() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int).
  • The 2nd argument with torch or the 1st argument is other(Required-Type:tensor of int).
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
import torch

tensor1 = torch.tensor(16)
tensor2 = torch.tensor([-40, -30, -20, -10, 0, 10, 20, 30])

torch.gcd(input=tensor1, other=tensor2)
tensor1.gcd(other=tensor2)
torch.gcd(input=tensor2, other=tensor1)
# tensor([8, 2, 4, 2, 16, 2, 4, 2])

tensor1 = torch.tensor([16, -12, -15, 1, 9, -25, 0, -18])
tensor2 = torch.tensor([-40, -30, -20, -10, 0, 10, 20, 30])

torch.gcd(input=tensor1, other=tensor2)
torch.gcd(input=tensor2, other=tensor1)
# tensor([8, 6, 5, 1, 9, 5, 20, 6])

tensor1 = torch.tensor([[16, -12, -15, 1], [9, -25, 0, -18]])
tensor2 = torch.tensor([0, 10, 20, 30])

torch.gcd(input=tensor1, other=tensor2)
torch.gcd(input=tensor2, other=tensor1)
# tensor([[16, 2, 5, 1], [9, 5, 20, 6]])

tensor1 = torch.tensor([[[16, -12], [-15, 1]],
                        [[9, -25], [0, -18]]])
tensor2 = torch.tensor([0, 10])

torch.gcd(input=tensor1, other=tensor2)
torch.gcd(input=tensor2, other=tensor1)
# tensor([[[16, 2], [15, 1]],
#         [[9, 5], [0, 2]]])
Enter fullscreen mode Exit fullscreen mode

lcm() can get the 0D or more D tensor of zero or more least common multiples from two of the 0D or more D tensors of zero or more elements as shown below:

*Memos:

  • lcm() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int).
  • The 2nd argument with torch or the 1st argument is other(Required-Type:tensor of int).
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
import torch

tensor1 = torch.tensor(10)
tensor2 = torch.tensor([-4, -3, -2, -1, 0, 1, 2, 3])

torch.lcm(input=tensor1, other=tensor2)
tensor1.lcm(other=tensor2)
torch.lcm(input=tensor2, other=tensor1)
# tensor([20, 30, 10, 10, 0, 10, 10, 30])

tensor1 = torch.tensor([10, 1, -15, 4, 9, -6, 0, -5])
tensor2 = torch.tensor([-4, -3, -2, -1, 0, 1, 2, 3])

torch.lcm(input=tensor1, other=tensor2)
torch.lcm(input=tensor2, other=tensor1)
# tensor([20, 3, 30, 4, 0, 6, 0, 15])

tensor1 = torch.tensor([[10, 1, -15, 4], [9, -6, 0, -5]])
tensor2 = torch.tensor([0, 1, 2, 3])

torch.lcm(input=tensor1, other=tensor2)
torch.lcm(input=tensor2, other=tensor1)
# tensor([[0, 1, 30, 12], [0, 6, 0, 15]])

tensor1 = torch.tensor([[[10, 1], [-15, 4]], [[9, -6], [0, -5]]])
tensor2 = torch.tensor([0, 1])

torch.lcm(input=tensor1, other=tensor2)
torch.lcm(input=tensor2, other=tensor1)
# tensor([[[0, 1], [0, 4]],
#         [[0, 6], [0, 5]]])
Enter fullscreen mode Exit fullscreen mode

Top comments (0)

Sentry image

Hands-on debugging session: instrument, monitor, and fix

Join Lazar for a hands-on session where you’ll build it, break it, debug it, and fix it. You’ll set up Sentry, track errors, use Session Replay and Tracing, and leverage some good ol’ AI to find and fix issues fast.

RSVP here →