DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

trace, reciprocal and rsqrt in PyTorch

Buy Me a Coffee

*Memos:

trace() can get the 0D tensor of the sum of the zero or more elements of diagonal from the 2D tensor of zero or more elements as shown below:

*Memos:

  • trace() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float or complex).
import torch

my_tensor = torch.tensor([[0, 1, 2],
                          [3, 4, 5],
                          [6, 7, 8]])
torch.trace(input=my_tensor)
my_tensor.trace()
# tensor(12)

my_tensor = torch.tensor([[0., 1., 2.],
                          [3., 4., 5.],
                          [6., 7., 8.]])
torch.trace(input=my_tensor)
# tensor(12.)

my_tensor = torch.tensor([[0.+0.j, 1.+0.j, 2.+0.j],
                          [3.+0.j, 4.+0.j, 5.+0.j],
                          [6.+0.j, 7.+0.j, 8.+0.j]])
torch.trace(input=my_tensor)
# tensor(12.+0.j)

my_tensor = torch.tensor([[0, 1, 2, 3],
                          [4, 5, 6, 7],
                          [8, 9, 10, 11]])
torch.trace(input=my_tensor)
# tensor(15)

my_tensor = torch.tensor([[0, 1, 2],
                          [3, 4, 5]])
torch.trace(input=my_tensor)
# tensor(4)

my_tensor = torch.tensor([[0, 1, 2],
                          [3, 4, 5],
                          [6, 7, 8],
                          [9, 10, 11]])
torch.trace(input=my_tensor)
# tensor(12)

my_tensor = torch.tensor([[]])

torch.trace(input=my_tensor)
# tensor(0.)
Enter fullscreen mode Exit fullscreen mode

reciprocal() can get the 0D or more D tensor of zero or more reciprocals from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • reciprocal() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
  • reciprocal() returns a float type tensor except when input or a tensor is a complex type tensor.
import torch

my_tensor = torch.tensor(-4.)

torch.reciprocal(input=my_tensor)
my_tensor.reciprocal()
# tensor(-0.2500)

my_tensor = torch.tensor([-4., -3., -2., -1., 0., 1., 2., 3.])

torch.reciprocal(input=my_tensor)
# tensor([-0.2500, -0.3333, -0.5000, -1.0000,
          inf, 1.0000, 0.5000, 0.3333])

my_tensor = torch.tensor([[-4., -3., -2., -1.],
                          [0., 1., 2., 3.]])
torch.reciprocal(input=my_tensor)
# tensor([[-0.2500, -0.3333, -0.5000, -1.0000],
#         [inf, 1.0000, 0.5000, 0.3333]])

my_tensor = torch.tensor([[[-4., -3.], [-2., -1.]],
                          [[0., 1.], [2., 3.]]])
torch.reciprocal(input=my_tensor)
# tensor([[[-0.2500, -0.3333], [-0.5000, -1.0000]],
#         [[inf, 1.0000], [0.5000, 0.3333]]])

my_tensor = torch.tensor([[[-4, -3], [-2, -1]],
                          [[0, 1], [2, 3]]])
torch.reciprocal(input=my_tensor)
# tensor([[[-0.2500, -0.3333], [-0.5000, -1.0000]],
#         [[inf, 1.0000], [0.5000, 0.3333]]])

my_tensor = torch.tensor([[[-4.+0.j, -3.+0.j], [-2.+0.j, -1.+0.j]],
                          [[0.+0.j, 1.+0.j], [2.+0.j, 3.+0.j]]])
torch.reciprocal(input=my_tensor)
# tensor([[[-0.2500-0.j, -0.3333-0.j], [-0.5000-0.j, -1.0000-0.j]],
#         [[nan+nanj, 1.0000-0.j], [ 0.5000-0.j, 0.3333-0.j]]])

my_tensor = torch.tensor([[[True, False], [True, False]],
                          [[False, True], [False, True]]])
torch.reciprocal(input=my_tensor)
# tensor([[[1., inf], [1., inf]],
#         [[inf, 1.], [inf, 1.]]])
Enter fullscreen mode Exit fullscreen mode

rsqrt() can get the 0D or more D tensor of the zero or more reciprocals of square root from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • rsqrt() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
  • rsqrt() returns a float type tensor except when input or a tensor is a complex type tensor.
import torch

my_tensor = torch.tensor(-3.)

torch.rsqrt(input=my_tensor)
my_tensor.rsqrt()
# tensor(nan)

my_tensor = torch.tensor([-3., -2., -1., 0., 1., 2., 3., 4.])

torch.rsqrt(input=my_tensor)
# tensor([nan, nan, nan, inf, 1.0000, 0.7071, 0.5774, 0.5000])

my_tensor = torch.tensor([[-3., -2., -1., 0.],
                          [1., 2., 3., 4.]])
torch.rsqrt(input=my_tensor)
# tensor([[nan, nan, nan, inf],
#         [1.0000, 0.7071, 0.5774, 0.5000]])

my_tensor = torch.tensor([[[-3., -2.],
                           [-1., 0.]],
                          [[1., 2.],
                           [3., 4.]]])
torch.rsqrt(input=my_tensor)
# tensor([[[nan, nan],
#          [nan, inf]],
#         [[1.0000, 0.7071],
#          [0.5774, 0.5000]]])

my_tensor = torch.tensor([[[-3, -2],
                           [-1, 0]],
                          [[1, 2],
                           [3, 4]]])
torch.rsqrt(input=my_tensor)
# tensor([[[nan, nan],
#          [nan, inf]],
#         [[1.0000, 0.7071],
#          [0.5774, 0.5000]]])

my_tensor = torch.tensor([[[-3.+0.j, -2.+0.j],
                           [-1.+0.j, 0.+0.j]],
                          [[1.+0.j, 2.+0.j],
                           [3.+0.j, 4.+0.j]]])
torch.rsqrt(input=my_tensor)
# tensor([[[0.0000-0.5774j, 0.0000-0.7071j],
#          [0.0000-1.0000j, nan+nanj]],
#         [[1.0000-0.0000j, 0.7071-0.0000j],
#          [0.5774-0.0000j, 0.5000-0.0000j]]])

my_tensor = torch.tensor([[[True, False],
                           [True, False]],
                          [[False, True],
                           [False, True]]])
torch.rsqrt(input=my_tensor)
# tensor([[[1., inf],
#          [1., inf]],
#         [[inf, 1.],
#          [inf, 1.]]])
Enter fullscreen mode Exit fullscreen mode

Speedy emails, satisfied customers

Postmark Image

Are delayed transactional emails costing you user satisfaction? Postmark delivers your emails almost instantly, keeping your customers happy and connected.

Sign up

Top comments (0)

Image of Docusign

🛠️ Bring your solution into Docusign. Reach over 1.6M customers.

Docusign is now extensible. Overcome challenges with disconnected products and inaccessible data by bringing your solutions into Docusign and publishing to 1.6M customers in the App Center.

Learn more