DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

L1Loss and MSELoss in PyTorch

Buy Me a Coffee

*Memos:

L1Loss() can get the 0D or more D tensor of the zero or more values(float) computed by L1 Loss(MAE) from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • There is reduction argument for initialization(Optional-Default:'mean'-Type:str). *'none', 'mean' or 'sum' can be selected.
  • There are size_average and reduce argument for initialization but they are deprecated.
  • The 1st argument is input(Required-Type:tensor of float or complex).
  • The 2nd argument is target(Required-Type:tensor of float or complex).
  • input and target should be the same size otherwise there is a warning.
  • Even complex type of input and target tensors return a float tensor.
  • The empty 1D or more D input and target tensor with reduction='mean' return nan.
  • The empty 1D or more D input and target tensor with reduction='sum' return 0.. Image description
import torch
from torch import nn

tensor1 = torch.tensor([ 8., -3., 0.,  1.,  5., -2., -1., 4.])
tensor2 = torch.tensor([-3.,  7., 4., -2., -9.,  6., -8., 5.])
                      # |x-y|
                      # |8.-(-3.)| = 11.
                      # ↓↓
                      # 11.+ 10.+ 4. + 3.+ 14. + 8. + 7.+ 1. = 58.
                      # 58. / 8 = 7.25
l1loss = nn.L1Loss()
l1loss(input=tensor1, target=tensor2)
# tensor(7.2500)

l1loss
# L1Loss()

l1loss.reduction
# 'mean'

l1loss = nn.L1Loss(reduction='mean')
l1loss(input=tensor1, target=tensor2)
# tensor(7.2500)

l1loss = nn.L1Loss(reduction='sum')
l1loss(input=tensor1, target=tensor2)
# tensor(58.)

l1loss = nn.L1Loss(reduction='none')
l1loss(input=tensor1, target=tensor2)
# tensor([11., 10., 4., 3., 14., 8., 7., 1.])

tensor1 = torch.tensor([[8., -3., 0., 1.], [5., -2., -1., 4.]])
tensor2 = torch.tensor([[-3., 7., 4., -2.], [-9., 6., -8., 5.]])

l1loss = nn.L1Loss()
l1loss(input=tensor1, target=tensor2)
# tensor(7.2500)

tensor1 = torch.tensor([[[8., -3.], [0., 1.]], [[5., -2.], [-1., 4.]]])
tensor2 = torch.tensor([[[-3., 7.], [4., -2.]], [[-9., 6.], [-8., 5.]]])

l1loss = nn.L1Loss()
l1loss(input=tensor1, target=tensor2)
# tensor(7.2500)

tensor1 = torch.tensor([[[8.+0.j, -3.+0.j], [0.+0.j, 1.+0.j]],
                        [[5.+0.j, -2.+0.j], [-1.+0.j, 4.+0.j]]])
tensor2 = torch.tensor([[[-3.+0.j, 7.+0.j], [4.+0.j, -2.+0.j]],
                        [[-9.+0.j, 6.+0.j], [-8.+0.j, 5.+0.j]]])
l1loss = nn.L1Loss()
l1loss(input=tensor1, target=tensor2)
# tensor(7.2500)

tensor1 = torch.tensor([])
tensor2 = torch.tensor([])

l1loss = nn.L1Loss(reduction='mean')
l1loss(input=tensor1, target=tensor2)
# tensor(nan)

l1loss = nn.L1Loss(reduction='sum')
l1loss(input=tensor1, target=tensor2)
# tensor(0.)
Enter fullscreen mode Exit fullscreen mode

MSELoss() can get the 0D or more D tensor of the zero or more values(float) computed by L2 Loss(MSE) from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • There is reduction argument for initialization(Optional-Default:'mean'-Type:str). *'none', 'mean' or 'sum' can be selected.
  • There are size_average and reduce argument for initialization but they are deprecated.
  • The 1st argument is input(Required-Type:tensor of float).
  • The 2nd argument is target(Required-Type:tensor of float).
  • input and target should be the same size otherwise there is a warning.
  • The empty 1D or more D input and target tensor with reduction='mean' return nan.
  • The empty 1D or more D input and target tensor with reduction='sum' return 0.. Image description
import torch
from torch import nn

tensor1 = torch.tensor([ 8., -3., 0.,  1.,  5., -2., -1., 4.])
tensor2 = torch.tensor([-3.,  7., 4., -2., -9.,  6., -8., 5.])
                     # (x-y)^2
                     # (8.-(-3.))^2 = 121.
                     # ↓↓↓
                     # 121. 100. 16.   9. 196.  64.  49.  1. = 556.
                     # 556. / 8 = 69.5
mseloss = nn.MSELoss()
mseloss(input=tensor1, target=tensor2)
# tensor(69.5000)

mseloss
# MSELoss()

mseloss.reduction
# 'mean'

mseloss = nn.MSELoss(reduction='mean')
mseloss(input=tensor1, target=tensor2)
# tensor(69.5000)

mseloss = nn.MSELoss(reduction='sum')
mseloss(input=tensor1, target=tensor2)
# tensor(556.)

mseloss = nn.MSELoss(reduction='none')
mseloss(input=tensor1, target=tensor2)
# tensor([121., 100., 16., 9., 196., 64., 49., 1.])

tensor1 = torch.tensor([[8., -3., 0., 1.], [5., -2., -1., 4.]])
tensor2 = torch.tensor([[-3., 7., 4., -2.], [-9., 6., -8., 5.]])

mseloss = nn.MSELoss()
mseloss(input=tensor1, target=tensor2)
# tensor(69.5000)

tensor1 = torch.tensor([[[8., -3.], [0., 1.]], [[5., -2.], [-1., 4.]]])
tensor2 = torch.tensor([[[-3., 7.], [4., -2.]], [[-9., 6.], [-8., 5.]]])

mseloss = nn.MSELoss()
mseloss(input=tensor1, target=tensor2)
# tensor(69.5000)

tensor1 = torch.tensor([])
tensor2 = torch.tensor([])

mseloss = nn.MSELoss(reduction='mean')
mseloss(input=tensor1, target=tensor2)
# tensor(nan)

mseloss = nn.MSELoss(reduction='sum')
mseloss(input=tensor1, target=tensor2)
# tensor(0.)
Enter fullscreen mode Exit fullscreen mode

Sentry image

Hands-on debugging session: instrument, monitor, and fix

Join Lazar for a hands-on session where you’ll build it, break it, debug it, and fix it. You’ll set up Sentry, track errors, use Session Replay and Tracing, and leverage some good ol’ AI to find and fix issues fast.

RSVP here →

Top comments (0)

Billboard image

Create up to 10 Postgres Databases on Neon's free plan.

If you're starting a new project, Neon has got your databases covered. No credit cards. No trials. No getting in your way.

Try Neon for Free →

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay