DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on

RandAugment in PyTorch (3)

Buy Me a Coffee

*Memos:

RandAugment() can randomly augment an image as shown below. *It's about magnitude and fill argument:

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandAugment
from torchvision.transforms.functional import InterpolationMode

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

m0_data = OxfordIIITPet( # `m` is magnitude.
    root="data",
    transform=RandAugment(magnitude=0)
)

m1_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=1)
)

m2_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=2)
)

m5_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=5)
)

m10_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=10)
)

m25_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=25)
)

no1000m0_data = OxfordIIITPet( # `no` is num_ops.
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=0)
)

no1000m1_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=1)
)

no1000m2_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=2)
)

no1000m5_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=5)
)

no1000m10_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=10)
)

no1000m25_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=25)
)

m0nmb1000_data = OxfordIIITPet( # `nmb` is num_magnitude_bins.
    root="data",
    transform=RandAugment(magnitude=0, num_magnitude_bins=1000)
)

m1nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=1, num_magnitude_bins=1000)
)

m2nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=2, num_magnitude_bins=1000)
)

m5nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=5, num_magnitude_bins=1000)
)

m10nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=10, num_magnitude_bins=1000)
)

m25nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=25, num_magnitude_bins=1000)
)

m50nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=50, num_magnitude_bins=1000)
)

m100nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=100, num_magnitude_bins=1000)
)

m500nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=500, num_magnitude_bins=1000)
)

m999nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=999, num_magnitude_bins=1000)
)

no1000m0nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=0, num_magnitude_bins=1000)
)

no1000m1nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=1, num_magnitude_bins=1000)
)

no1000m2nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=2, num_magnitude_bins=1000)
)

no1000m5nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=5, num_magnitude_bins=1000)
)

no1000m10nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=10, num_magnitude_bins=1000)
)

no1000m25nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=25, num_magnitude_bins=1000)
)

no1000m50nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=50, num_magnitude_bins=1000)
)

no1000m100nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=100, num_magnitude_bins=1000)
)

no1000m500nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=500, num_magnitude_bins=1000)
)

no1000m999nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=999, num_magnitude_bins=1000)
)

m25fgray_data = OxfordIIITPet( # `f` is fill.
    root="data",
    transform=RandAugment(magnitude=25, fill=150)
    # transform=RandAugment(magnitude=25, fill=[150])
)

m25fpurple_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=25, fill=[160, 32, 240])
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=m0_data, main_title="m0_data")
show_images1(data=m1_data, main_title="m1_data")
show_images1(data=m2_data, main_title="m2_data")
show_images1(data=m5_data, main_title="m5_data")
show_images1(data=m10_data, main_title="m10_data")
show_images1(data=m25_data, main_title="m25_data")
print()
show_images1(data=no1000m0_data, main_title="no1000m0_data")
show_images1(data=no1000m1_data, main_title="no1000m1_data")
show_images1(data=no1000m2_data, main_title="no1000m2_data")
show_images1(data=no1000m5_data, main_title="no1000m5_data")
show_images1(data=no1000m10_data, main_title="no1000m10_data")
show_images1(data=no1000m25_data, main_title="no1000m25_data")
print()
show_images1(data=m0nmb1000_data, main_title="m0nmb1000_data")
show_images1(data=m1nmb1000_data, main_title="m1nmb1000_data")
show_images1(data=m2nmb1000_data, main_title="m2nmb1000_data")
show_images1(data=m5nmb1000_data, main_title="m5nmb1000_data")
show_images1(data=m10nmb1000_data, main_title="m10nmb1000_data")
show_images1(data=m25nmb1000_data, main_title="m25nmb1000_data")
show_images1(data=m50nmb1000_data, main_title="m50nmb1000_data")
show_images1(data=m100nmb1000_data, main_title="m100nmb1000_data")
show_images1(data=m500nmb1000_data, main_title="m500nmb1000_data")
show_images1(data=m999nmb1000_data, main_title="m999nmb1000_data")
print()
show_images1(data=no1000m0nmb1000_data, main_title="no1000m0nmb1000_data")
show_images1(data=no1000m1nmb1000_data, main_title="no1000m1nmb1000_data")
show_images1(data=no1000m2nmb1000_data, main_title="no1000m2nmb1000_data")
show_images1(data=no1000m5nmb1000_data, main_title="no1000m5nmb1000_data")
show_images1(data=no1000m10nmb1000_data, main_title="no1000m10nmb1000_data")
show_images1(data=no1000m25nmb1000_data, main_title="no1000m25nmb1000_data")
show_images1(data=no1000m50nmb1000_data, main_title="no1000m50nmb1000_data")
show_images1(data=no1000m100nmb1000_data, main_title="no1000m100nmb1000_data")
show_images1(data=no1000m500nmb1000_data, main_title="no1000m500nmb1000_data")
show_images1(data=no1000m999nmb1000_data, main_title="no1000m999nmb1000_data")
print()
show_images1(data=m25fgray_data, main_title="m25fgray_data")
show_images1(data=m25fpurple_data, main_title="m25fpurple_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, no=2, m=9, nmb=31,
                 ip=InterpolationMode.NEAREST, f=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if main_title != "origin_data":
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            ra = RandAugment(num_ops=no, magnitude=m,
                             num_magnitude_bins=nmb,
                             interpolation=ip, fill=f)
            plt.imshow(X=ra(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="m0_data", m=0)
show_images2(data=origin_data, main_title="m1_data", m=1)
show_images2(data=origin_data, main_title="m2_data", m=2)
show_images2(data=origin_data, main_title="m5_data", m=5)
show_images2(data=origin_data, main_title="m10_data", m=10)
show_images2(data=origin_data, main_title="m25_data", m=25)
print()
show_images2(data=origin_data, main_title="no1000m0_data", no=1000, m=0)
show_images2(data=origin_data, main_title="no1000m1_data", no=1000, m=1)
show_images2(data=origin_data, main_title="no1000m2_data", no=1000, m=2)
show_images2(data=origin_data, main_title="no1000m5_data", no=1000, m=5)
show_images2(data=origin_data, main_title="no1000m10_data", no=1000, m=10)
show_images2(data=origin_data, main_title="no1000m25_data", no=1000, m=25)
print()
show_images2(data=origin_data, main_title="m0nmb1000_data", m=0, nmb=1000)
show_images2(data=origin_data, main_title="m1nmb1000_data", m=1, nmb=1000)
show_images2(data=origin_data, main_title="m2nmb1000_data", m=2, nmb=1000)
show_images2(data=origin_data, main_title="m5nmb1000_data", m=5, nmb=1000)
show_images2(data=origin_data, main_title="m10nmb1000_data", m=10, nmb=1000)
show_images2(data=origin_data, main_title="m25nmb1000_data", m=25, nmb=1000)
show_images2(data=origin_data, main_title="m50nmb1000_data", m=50, nmb=1000)
show_images2(data=origin_data, main_title="m100nmb1000_data", m=100, nmb=1000)
show_images2(data=origin_data, main_title="m500nmb1000_data", m=500, nmb=1000)
show_images2(data=origin_data, main_title="m999nmb1000_data", m=999, nmb=1000)
print()
show_images2(data=origin_data, main_title="no1000m0nmb1000_data", no=1000, m=0,
             nmb=1000)
show_images2(data=origin_data, main_title="no1000m1nmb1000_data", no=1000, m=1,
             nmb=1000)
show_images2(data=origin_data, main_title="no1000m2nmb1000_data", no=1000, m=2,
             nmb=1000)
show_images2(data=origin_data, main_title="no1000m5nmb1000_data", no=1000, m=5,
             nmb=1000)
show_images2(data=origin_data, main_title="no1000m10nmb1000_data", no=1000,
             m=10, nmb=1000)
show_images2(data=origin_data, main_title="no1000m25nmb1000_data", no=1000,
             m=25, nmb=1000)
show_images2(data=origin_data, main_title="no1000m50nmb1000_data", no=1000,
             m=50, nmb=1000)
show_images2(data=origin_data, main_title="no1000m100nmb1000_data", no=1000,
             m=100, nmb=1000)
show_images2(data=origin_data, main_title="no1000m500nmb1000_data", no=1000,
             m=500, nmb=1000)
show_images2(data=origin_data, main_title="no1000m999nmb1000_data", no=1000,
             m=999, nmb=1000)
print()
show_images2(data=origin_data, main_title="m25fgray_data", m=25, f=150)
show_images2(data=origin_data, main_title="m25fpurple_data", m=25,
             f=[160, 32, 240])
Enter fullscreen mode Exit fullscreen mode

Image description


Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Billboard image

The Next Generation Developer Platform

Coherence is the first Platform-as-a-Service you can control. Unlike "black-box" platforms that are opinionated about the infra you can deploy, Coherence is powered by CNC, the open-source IaC framework, which offers limitless customization.

Learn more

Top comments (0)

AWS Security LIVE!

Join us for AWS Security LIVE!

Discover the future of cloud security. Tune in live for trends, tips, and solutions from AWS and AWS Partners.

Learn More

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay