DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

RandomAffine in PyTorch (4)

Buy Me a Coffee

*Memos:

RandomAffine() can do random rotation or random affine transformation for an image as shown below. *It's about shear argument (2):

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomAffine

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

shear0_0_0_0origin_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, 0, 0])
)

shear0_0_10_10_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, 10, 10])
    # transform=RandomAffine(degrees=[0, 0], shear=[0, 0, -170, -170])
)

shear0_0_20_20_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, 20, 20])
    # transform=RandomAffine(degrees=[0, 0], shear=[0, 0, -160, -160])
)

shear0_0_30_30_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, 30, 30])
    # transform=RandomAffine(degrees=[0, 0], shear=[0, 0, -150, -150])
)

shear0_0_40_40_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, 40, 40])
    # transform=RandomAffine(degrees=[0, 0], shear=[0, 0, -140, -140])
)

shear0_0_50_50_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, 50, 50])
    # transform=RandomAffine(degrees=[0, 0], shear=[0, 0, -130, -130])
)

shear0_0_60_60_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, 60, 60])
    # transform=RandomAffine(degrees=[0, 0], shear=[0, 0, -120, -120])
)

shear0_0_70_70_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, 70, 70])
    # transform=RandomAffine(degrees=[0, 0], shear=[0, 0, -110, -110])
)

shear0_0_80_80_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, 80, 80])
    # transform=RandomAffine(degrees=[0, 0], shear=[0, 0, -100, -100])
)

shear0_0_90_90_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, 90, 90])
    # transform=RandomAffine(degrees=[0, 0], shear=[0, 0, -90, -90])
)

shear0_0n10n10_data = OxfordIIITPet( # `n` is negative.
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, -10, -10])
    # transform=RandomAffine(degrees=[0, 0], shear=[0, 0, 170, 170])
)

shear0_0n20n20_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, -20, -20])
    # transform=RandomAffine(degrees=[0, 0], shear=[0, 0, 160, 160])
)

shear0_0n30n30_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, -30, -30])
    # transform=RandomAffine(degrees=[0, 0], shear=[0, 0, 150, 150])
)

shear0_0n40n40_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, -40, -40])
    # transform=RandomAffine(degrees=[0, 0], shear=[0, 0, 140, 140])
)

shear0_0n50n50_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, -50, -50])
    # transform=RandomAffine(degrees=[0, 0], shear=[0, 0, 130, 130])
)

shear0_0n60n60_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, -60, -60])
    # transform=RandomAffine(degrees=[0, 0], shear=[0, 0, 120, 120])
)

shear0_0n70n70_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, -70, -70])
    # transform=RandomAffine(degrees=[0, 0], shear=[0, 0, 110, 110])
)

shear0_0n80n80_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, -80, -80])
    # transform=RandomAffine(degrees=[0, 0], shear=[0, 0, 100, 100])
)

shear0_0n90n90_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], shear=[0, 0, -90, -90])
    # transform=RandomAffine(degrees=[0, 0], shear=[0, 0, 90, 90])
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=shear0_0_0_0origin_data, 
             main_title="shear0_0_0_0origin_data")
show_images1(data=shear0_0_10_10_data, main_title="shear0_0_10_10_data")
show_images1(data=shear0_0_20_20_data, main_title="shear0_0_20_20_data")
show_images1(data=shear0_0_30_30_data, main_title="shear0_0_30_30_data")
show_images1(data=shear0_0_40_40_data, main_title="shear0_0_40_40_data")
show_images1(data=shear0_0_50_50_data, main_title="shear0_0_50_50_data")
show_images1(data=shear0_0_60_60_data, main_title="shear0_0_60_60_data")
show_images1(data=shear0_0_70_70_data, main_title="shear0_0_70_70_data")
show_images1(data=shear0_0_80_80_data, main_title="shear0_0_80_80_data")
show_images1(data=shear0_0_90_90_data, main_title="shear0_0_90_90_data")
print()
show_images1(data=shear0_0_0_0origin_data, 
             main_title="shear0_0_0_0origin_data")
show_images1(data=shear0_0n10n10_data, main_title="shear0_0n10n10_data")
show_images1(data=shear0_0n20n20_data, main_title="shear0_0n20n20_data")
show_images1(data=shear0_0n30n30_data, main_title="shear0_0n30n30_data")
show_images1(data=shear0_0n40n40_data, main_title="shear0_0n40n40_data")
show_images1(data=shear0_0n50n50_data, main_title="shear0_0n50n50_data")
show_images1(data=shear0_0n60n60_data, main_title="shear0_0n60n60_data")
show_images1(data=shear0_0n70n70_data, main_title="shear0_0n70n70_data")
show_images1(data=shear0_0n80n80_data, main_title="shear0_0n80n80_data")
show_images1(data=shear0_0n90n90_data, main_title="shear0_0n90n90_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ 
def show_images2(data, main_title=None, d=None, t=None, sc=None, sh=None,
                 ip=InterpolationMode.NEAREST, f=0, c=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if d != None:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            ra = RandomAffine(degrees=d, translate=t, scale=sc, shear=sh,
                              interpolation=ip, center=c, fill=f)
            plt.imshow(X=ra(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])  
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="shear0_0_0_0origin_data",
             d=[0, 0], sh=[0, 0, 0, 0])
show_images2(data=origin_data, main_title="shear0_0_10_10_data",
             d=[0, 0], sh=[0, 0, 10, 10])
show_images2(data=origin_data, main_title="shear0_0_20_20_data",
             d=[0, 0], sh=[0, 0, 20, 20])
show_images2(data=origin_data, main_title="shear0_0_30_30_data",
             d=[0, 0], sh=[0, 0, 30, 30])
show_images2(data=origin_data, main_title="shear0_0_40_40_data",
             d=[0, 0], sh=[0, 0, 40, 40])
show_images2(data=origin_data, main_title="shear0_0_50_50_data",
             d=[0, 0], sh=[0, 0, 50, 50])
show_images2(data=origin_data, main_title="shear0_0_60_60_data",
             d=[0, 0], sh=[0, 0, 60, 60])
show_images2(data=origin_data, main_title="shear0_0_70_70_data",
             d=[0, 0], sh=[0, 0, 70, 70])
show_images2(data=origin_data, main_title="shear0_0_80_80_data",
             d=[0, 0], sh=[0, 0, 80, 80])
show_images2(data=origin_data, main_title="shear0_0_90_90_data",
             d=[0, 0], sh=[0, 0, 90, 90])
print()
show_images2(data=origin_data, main_title="shear0_0_0_0origin_data",
             d=[0, 0], sh=[0, 0, 0, 0])
show_images2(data=origin_data, main_title="shear0_0n10n10_data",
             d=[0, 0], sh=[0, 0, -10, -10])
show_images2(data=origin_data, main_title="shear0_0n20n20_data",
             d=[0, 0], sh=[0, 0, -20, -20])
show_images2(data=origin_data, main_title="shear0_0n30n30_data",
             d=[0, 0], sh=[0, 0, -30, -30])
show_images2(data=origin_data, main_title="shear0_0n40n40_data",
             d=[0, 0], sh=[0, 0, -40, -40])
show_images2(data=origin_data, main_title="shear0_0n50n50_data",
             d=[0, 0], sh=[0, 0, -50, -50])
show_images2(data=origin_data, main_title="shear0_0n60n60_data",
             d=[0, 0], sh=[0, 0, -60, -60])
show_images2(data=origin_data, main_title="shear0_0n70n70_data",
             d=[0, 0], sh=[0, 0, -70, -70])
show_images2(data=origin_data, main_title="shear0_0n80n80_data",
             d=[0, 0], sh=[0, 0, -80, -80])
show_images2(data=origin_data, main_title="shear0_0n90n90_data",
             d=[0, 0], sh=[0, 0, -90, -90])
Enter fullscreen mode Exit fullscreen mode

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Heroku

Simplify your DevOps and maximize your time.

Since 2007, Heroku has been the go-to platform for developers as it monitors uptime, performance, and infrastructure concerns, allowing you to focus on writing code.

Learn More

Top comments (0)

Billboard image

The Next Generation Developer Platform

Coherence is the first Platform-as-a-Service you can control. Unlike "black-box" platforms that are opinionated about the infra you can deploy, Coherence is powered by CNC, the open-source IaC framework, which offers limitless customization.

Learn more

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay