*Memos:
- My post explains RandomHorizontalFlip().
- My post explains OxfordIIITPet().
RandomVerticalFlip() can flip zero or more images vertically as shown below:
*Memos:
- The 1st argument for initialization is
p
(Optional-Default:0.5
-Type:float
). *It's the probability which each image is flipped. *It's the probability which each image is flipped. - The 1st argument is
img
(Required-Type:PIL Image
ortensor
,tuple
orlist
ofint
): *Memos:- It must be 2D.
- Don't use
img=
.
-
v2
is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomVerticalFlip
RandomVerticalFlip()
# RandomVerticalFlip(p=0.5)
RandomVerticalFlip().p
# 0.5
origin_data = OxfordIIITPet(
root="data",
transform=None
)
trans100_data = OxfordIIITPet(
root="data",
transform=RandomVerticalFlip(p=1.0)
)
trans50_data = OxfordIIITPet(
root="data",
transform=RandomVerticalFlip(p=0.5)
)
import matplotlib.pyplot as plt
def show_images(data, main_title=None):
plt.figure(figsize=(10, 5))
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images(data=origin_data, main_title="origin_data")
show_images(data=trans100_data, main_title="trans100_data")
show_images(data=trans50_data, main_title="trans50_data")
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomVerticalFlip
my_data = OxfordIIITPet(
root="data",
transform=None
)
import matplotlib.pyplot as plt
def show_images(data, main_title=None, prob=0.0):
plt.figure(figsize=(10, 5))
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
rvf = RandomVerticalFlip(p=prob)
plt.imshow(X=rvf(im))
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images(data=my_data, main_title="origin_data")
show_images(data=my_data, main_title="trans100_data", prob=1.0)
show_images(data=my_data, main_title="trans50_data", prob=0.5)
Top comments (0)