DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

1

repeat in PyTorch

Buy Me a Coffee

*Memos:

repeat() can get the 0D or more D tensor of zero or more repeated elements from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • repeat() can be used with a tensor but not with torch.
  • Using a tensor(Required-Type:tensor of int, float, complex or bool).
  • The 1st or more arguments with a tensor are repeats(Required-Type:int, tuple of int, list of int or size()): *Memos:
    • Its D must be more than or equal to the tensor's D.
    • If at least one dimension is 0, an empty tensor is returned.
    • repeats= mustn't be used for the one or more dimensions without a tuple, list or size().
import torch

my_tensor = torch.tensor([7, 4, 2])

my_tensor.repeat(repeats=(0,))
my_tensor.repeat(0)
my_tensor.repeat(repeats=torch.tensor([]).size())
# tensor([], dtype=torch.int64)

my_tensor.repeat(repeats=(1,))
my_tensor.repeat(1)
my_tensor.repeat(repeats=torch.tensor([5]).size())
# tensor([7, 4, 2])

my_tensor.repeat(repeats=(2,))
my_tensor.repeat(2)
my_tensor.repeat(repeats=torch.tensor([5, 8]).size())
# tensor([7, 4, 2, 7, 4, 2])

my_tensor.repeat(repeats=(3,))
my_tensor.repeat(3)
my_tensor.repeat(repeats=torch.tensor([5, 8, 1]).size())
# tensor([7, 4, 2, 7, 4, 2, 7, 4, 2])
etc.

my_tensor.repeat(repeats=(3, 2))
my_tensor.repeat(3, 2)
my_tensor.repeat(repeats=torch.tensor([[5, 8], [1, 9], [3, 0]]).size())
# tensor([[7, 4, 2, 7, 4, 2],
#         [7, 4, 2, 7, 4, 2],
#         [7, 4, 2, 7, 4, 2]])
etc.

my_tensor.repeat(repeats=(3, 2, 1))
my_tensor.repeat(3, 2, 1)
# tensor([[[7, 4, 2], [7, 4, 2]],
#         [[7, 4, 2], [7, 4, 2]],
#         [[7, 4, 2], [7, 4, 2]]])
etc.

my_tensor.repeat(repeats=(3, 0, 1))
my_tensor.repeat(3, 0, 1)
# tensor([], size=(3, 0, 3), dtype=torch.int64)

my_tensor = torch.tensor([[7, 4, 2], [5, 1, 6]])

my_tensor.repeat(repeats=(3, 2))
my_tensor.repeat(3, 2)
my_tensor.repeat(repeats=torch.tensor([[5, 8], [1, 9], [3, 0]]).size())
# tensor([[7, 4, 2, 7, 4, 2],
#         [5, 1, 6, 5, 1, 6],
#         [7, 4, 2, 7, 4, 2],
#         [5, 1, 6, 5, 1, 6],
#         [7, 4, 2, 7, 4, 2],
#         [5, 1, 6, 5, 1, 6]])

my_tensor = torch.tensor([[7., 4., 2.], [5., 1., 6.]])

my_tensor.repeat(repeats=(3, 2))
# tensor([[7., 4., 2., 7., 4., 2.],
#         [5., 1., 6., 5., 1., 6.],
#         [7., 4., 2., 7., 4., 2.],
#         [5., 1., 6., 5., 1., 6.],
#         [7., 4., 2., 7., 4., 2.],
#         [5., 1., 6., 5., 1., 6.]])

my_tensor = torch.tensor([[7.+0.j, 4.+0.j, 2.+0.j],
                          [5.+0.j, 1.+0.j, 6.+0.j]])
my_tensor.repeat(repeats=(3, 2))
# tensor([[7.+0.j, 4.+0.j, 2.+0.j, 7.+0.j, 4.+0.j, 2.+0.j],
#         [5.+0.j, 1.+0.j, 6.+0.j, 5.+0.j, 1.+0.j, 6.+0.j],
#         [7.+0.j, 4.+0.j, 2.+0.j, 7.+0.j, 4.+0.j, 2.+0.j],
#         [5.+0.j, 1.+0.j, 6.+0.j, 5.+0.j, 1.+0.j, 6.+0.j],
#         [7.+0.j, 4.+0.j, 2.+0.j, 7.+0.j, 4.+0.j, 2.+0.j],
#         [5.+0.j, 1.+0.j, 6.+0.j, 5.+0.j, 1.+0.j, 6.+0.j]])

my_tensor = torch.tensor([[True, False, True],
                          [False, True, False]])
my_tensor.repeat(repeats=(3, 2))
# tensor([[True, False, True, True, False, True],
#         [False, True, False, False, True, False],
#         [True, False, True, True, False, True],
#         [False True, False, False, True, False],
#         [True, False, True, True, False, True],
#         [False, True, False, False, True, False]])
Enter fullscreen mode Exit fullscreen mode

Sentry image

Hands-on debugging session: instrument, monitor, and fix

Join Lazar for a hands-on session where you’ll build it, break it, debug it, and fix it. You’ll set up Sentry, track errors, use Session Replay and Tracing, and leverage some good ol’ AI to find and fix issues fast.

RSVP here →

Top comments (0)

Image of Docusign

🛠️ Bring your solution into Docusign. Reach over 1.6M customers.

Docusign is now extensible. Overcome challenges with disconnected products and inaccessible data by bringing your solutions into Docusign and publishing to 1.6M customers in the App Center.

Learn more