DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

rot90 in PyTorch

Buy Me a Coffee

*My post explains roll().

rot90() can get the 2D or more D tensor of zero or more rotated elements by 90 degrees from the 2D or more D tensor of zero or more elements as shown below:

*Memos:

  • rot90() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • The 2nd argument with torch or the 1st argument with a tensor is k(Optional-Default:1-Type:int).
  • The 3rd argument with torch or the 2nd argument with a tensor is dims(Optional-Default:[0, 1]-Type:tuple of int or list of int).
import torch

my_tensor = torch.tensor([[0, 1, 2], [3, 4, 5]])

torch.rot90(input=my_tensor)
my_tensor.rot90()
torch.rot90(input=my_tensor, k=1)
torch.rot90(input=my_tensor, k=-3)
torch.rot90(input=my_tensor, dims=(0, 1))
torch.rot90(input=my_tensor, dims=(0, -1))
torch.rot90(input=my_tensor, k=1, dims=(0, 1))
torch.rot90(input=my_tensor, k=1, dims=(0, -1))
torch.rot90(input=my_tensor, k=1, dims=(-2, 1))
torch.rot90(input=my_tensor, k=1, dims=(-2, -1))
torch.rot90(input=my_tensor, k=3, dims=(1, 0))
torch.rot90(input=my_tensor, k=3, dims=(1, -2))
torch.rot90(input=my_tensor, k=3, dims=(-1, 0))
torch.rot90(input=my_tensor, k=3, dims=(-1, -2))
torch.rot90(input=my_tensor, k=-1, dims=(1, 0))
torch.rot90(input=my_tensor, k=-1, dims=(1, -2))
torch.rot90(input=my_tensor, k=-1, dims=(-1, 0))
torch.rot90(input=my_tensor, k=-1, dims=(-1, -2))
torch.rot90(input=my_tensor, k=-3, dims=(0, 1))
torch.rot90(input=my_tensor, k=-3, dims=(0, -1))
torch.rot90(input=my_tensor, k=-3, dims=(-2, 1))
torch.rot90(input=my_tensor, k=-3, dims=(-2, -1))
etc.
# tensor([[2, 5], [1, 4], [0, 3]])

torch.rot90(input=my_tensor, k=0)
torch.rot90(input=my_tensor, k=-4)
torch.rot90(input=my_tensor, k=0, dims=(0, 1))
torch.rot90(input=my_tensor, k=0, dims=(0, -1))
torch.rot90(input=my_tensor, k=0, dims=(1, 0))
torch.rot90(input=my_tensor, k=0, dims=(1, -2))
torch.rot90(input=my_tensor, k=0, dims=(-1, 0))
torch.rot90(input=my_tensor, k=0, dims=(-1, -2))
torch.rot90(input=my_tensor, k=0, dims=(-2, 1))
torch.rot90(input=my_tensor, k=0, dims=(-2, -1))
torch.rot90(input=my_tensor, k=-4, dims=(0, 1))
torch.rot90(input=my_tensor, k=-4, dims=(0, -1))
torch.rot90(input=my_tensor, k=-4, dims=(1, 0))
torch.rot90(input=my_tensor, k=-4, dims=(1, -2))
torch.rot90(input=my_tensor, k=-4, dims=(-1, 0))
torch.rot90(input=my_tensor, k=-4, dims=(-1, -2))
torch.rot90(input=my_tensor, k=-4, dims=(-2, 1))
torch.rot90(input=my_tensor, k=-4, dims=(-2, -1))
etc.
# tensor([[0, 1, 2], [3, 4, 5]])

torch.rot90(input=my_tensor, k=2)
torch.rot90(input=my_tensor, k=-2)
torch.rot90(input=my_tensor, k=2, dims=(0, 1))
torch.rot90(input=my_tensor, k=2, dims=(0, -1))
torch.rot90(input=my_tensor, k=2, dims=(1, 0))
torch.rot90(input=my_tensor, k=2, dims=(1, -2))
torch.rot90(input=my_tensor, k=2, dims=(-1, 0))
torch.rot90(input=my_tensor, k=2, dims=(-1, -2))
torch.rot90(input=my_tensor, k=2, dims=(-2, 1))
torch.rot90(input=my_tensor, k=2, dims=(-2, -1))
torch.rot90(input=my_tensor, k=-2, dims=(0, 1))
torch.rot90(input=my_tensor, k=-2, dims=(0, -1))
torch.rot90(input=my_tensor, k=-2, dims=(1, 0))
torch.rot90(input=my_tensor, k=-2, dims=(1, -2))
torch.rot90(input=my_tensor, k=-2, dims=(-1, 0))
torch.rot90(input=my_tensor, k=-2, dims=(-1, -2))
torch.rot90(input=my_tensor, k=-2, dims=(-2, 1))
torch.rot90(input=my_tensor, k=-2, dims=(-2, -1))
etc.
# tensor([[5, 4, 3], [2, 1, 0]])

torch.rot90(input=my_tensor, k=3)
torch.rot90(input=my_tensor, k=-1)
torch.rot90(input=my_tensor, dims=(1, 0))
torch.rot90(input=my_tensor, dims=(1, -2))
torch.rot90(input=my_tensor, k=1, dims=(1, 0))
torch.rot90(input=my_tensor, k=1, dims=(1, -2))
torch.rot90(input=my_tensor, k=1, dims=(-1, 0))
torch.rot90(input=my_tensor, k=1, dims=(-1, -2))
torch.rot90(input=my_tensor, k=3, dims=(0, 1))
torch.rot90(input=my_tensor, k=3, dims=(0, -1))
torch.rot90(input=my_tensor, k=3, dims=(-2, 1))
torch.rot90(input=my_tensor, k=3, dims=(-2, -1))
torch.rot90(input=my_tensor, k=-1, dims=(0, 1))
torch.rot90(input=my_tensor, k=-1, dims=(0, -1))
torch.rot90(input=my_tensor, k=-1, dims=(-2, 1))
torch.rot90(input=my_tensor, k=-1, dims=(-2, -1))
torch.rot90(input=my_tensor, k=-3, dims=(1, 0))
torch.rot90(input=my_tensor, k=-3, dims=(1, -2))
torch.rot90(input=my_tensor, k=-3, dims=(-1, 0))
torch.rot90(input=my_tensor, k=-3, dims=(-1, -2))
etc.
# tensor([[3, 0], [4, 1], [5, 2]])

my_tensor = torch.tensor([[0., 1., 2.], [3., 4., 5.]])

torch.rot90(input=my_tensor)
# tensor([[2., 5.], [1., 4.], [0., 3.]])

my_tensor = torch.tensor([[0.+0.j, 1.+0.j, 2.+0.j],
                          [3.+0.j, 4.+0.j, 5.+0.j]])
torch.rot90(input=my_tensor)
# tensor([[2.+0.j, 5.+0.j],
#         [1.+0.j, 4.+0.j],
#         [0.+0.j, 3.+0.j]])

my_tensor = torch.tensor([[True, True, True],
                          [False, False, False]])
torch.rot90(input=my_tensor)
# tensor([[True, False],
#         [True, False],
#         [True, False]])
Enter fullscreen mode Exit fullscreen mode

AWS Security LIVE!

Join us for AWS Security LIVE!

Discover the future of cloud security. Tune in live for trends, tips, and solutions from AWS and AWS Partners.

Learn More

Top comments (0)

Billboard image

Create up to 10 Postgres Databases on Neon's free plan.

If you're starting a new project, Neon has got your databases covered. No credit cards. No trials. No getting in your way.

Try Neon for Free →

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay