WEBSITE:Welcome to Jessie's World
GitHub:GitHub
前言
在微信小程序开发中,经常需要实现分享海报功能,通常包含动态二维码。本文将详细介绍如何在小程序中生成带有二维码的海报,并实现保存到手机相册的功能。
实现原理
整个功能的实现主要包含以下几个步骤:
- 生成二维码
- 绘制海报背景
- 将二维码绘制到海报上
- 将画布导出为图片
- 保存图片到相册
核心代码实现
1. 二维码生成工具类
首先,我们需要一个二维码生成的工具类。这里使用优化后的 QRCode 工具:
qrcode.js:绘制二维码
// qrcode.js 绘制二维码
!(function () {
// alignment pattern
var adelta = [
0, 11, 15, 19, 23, 27, 31, 16, 18, 20, 22, 24, 26, 28, 20, 22, 24, 24, 26, 28, 28, 22, 24, 24, 26, 26, 28, 28, 24, 24, 26, 26,
26, 28, 28, 24, 26, 26, 26, 28, 28
];
// version block
var vpat = [
0xc94, 0x5bc, 0xa99, 0x4d3, 0xbf6, 0x762, 0x847, 0x60d, 0x928, 0xb78, 0x45d, 0xa17, 0x532, 0x9a6, 0x683, 0x8c9, 0x7ec, 0xec4,
0x1e1, 0xfab, 0x08e, 0xc1a, 0x33f, 0xd75, 0x250, 0x9d5, 0x6f0, 0x8ba, 0x79f, 0xb0b, 0x42e, 0xa64, 0x541, 0xc69
];
// final format bits with mask: level << 3 | mask
var fmtword = [
0x77c4,
0x72f3,
0x7daa,
0x789d,
0x662f,
0x6318,
0x6c41,
0x6976, //L
0x5412,
0x5125,
0x5e7c,
0x5b4b,
0x45f9,
0x40ce,
0x4f97,
0x4aa0, //M
0x355f,
0x3068,
0x3f31,
0x3a06,
0x24b4,
0x2183,
0x2eda,
0x2bed, //Q
0x1689,
0x13be,
0x1ce7,
0x19d0,
0x0762,
0x0255,
0x0d0c,
0x083b //H
];
// 4 per version: number of blocks 1,2; data width; ecc width
var eccblocks = [
1, 0, 19, 7, 1, 0, 16, 10, 1, 0, 13, 13, 1, 0, 9, 17, 1, 0, 34, 10, 1, 0, 28, 16, 1, 0, 22, 22, 1, 0, 16, 28, 1, 0, 55, 15, 1,
0, 44, 26, 2, 0, 17, 18, 2, 0, 13, 22, 1, 0, 80, 20, 2, 0, 32, 18, 2, 0, 24, 26, 4, 0, 9, 16, 1, 0, 108, 26, 2, 0, 43, 24, 2,
2, 15, 18, 2, 2, 11, 22, 2, 0, 68, 18, 4, 0, 27, 16, 4, 0, 19, 24, 4, 0, 15, 28, 2, 0, 78, 20, 4, 0, 31, 18, 2, 4, 14, 18, 4,
1, 13, 26, 2, 0, 97, 24, 2, 2, 38, 22, 4, 2, 18, 22, 4, 2, 14, 26, 2, 0, 116, 30, 3, 2, 36, 22, 4, 4, 16, 20, 4, 4, 12, 24, 2,
2, 68, 18, 4, 1, 43, 26, 6, 2, 19, 24, 6, 2, 15, 28, 4, 0, 81, 20, 1, 4, 50, 30, 4, 4, 22, 28, 3, 8, 12, 24, 2, 2, 92, 24, 6,
2, 36, 22, 4, 6, 20, 26, 7, 4, 14, 28, 4, 0, 107, 26, 8, 1, 37, 22, 8, 4, 20, 24, 12, 4, 11, 22, 3, 1, 115, 30, 4, 5, 40, 24,
11, 5, 16, 20, 11, 5, 12, 24, 5, 1, 87, 22, 5, 5, 41, 24, 5, 7, 24, 30, 11, 7, 12, 24, 5, 1, 98, 24, 7, 3, 45, 28, 15, 2, 19,
24, 3, 13, 15, 30, 1, 5, 107, 28, 10, 1, 46, 28, 1, 15, 22, 28, 2, 17, 14, 28, 5, 1, 120, 30, 9, 4, 43, 26, 17, 1, 22, 28, 2,
19, 14, 28, 3, 4, 113, 28, 3, 11, 44, 26, 17, 4, 21, 26, 9, 16, 13, 26, 3, 5, 107, 28, 3, 13, 41, 26, 15, 5, 24, 30, 15, 10,
15, 28, 4, 4, 116, 28, 17, 0, 42, 26, 17, 6, 22, 28, 19, 6, 16, 30, 2, 7, 111, 28, 17, 0, 46, 28, 7, 16, 24, 30, 34, 0, 13,
24, 4, 5, 121, 30, 4, 14, 47, 28, 11, 14, 24, 30, 16, 14, 15, 30, 6, 4, 117, 30, 6, 14, 45, 28, 11, 16, 24, 30, 30, 2, 16, 30,
8, 4, 106, 26, 8, 13, 47, 28, 7, 22, 24, 30, 22, 13, 15, 30, 10, 2, 114, 28, 19, 4, 46, 28, 28, 6, 22, 28, 33, 4, 16, 30, 8,
4, 122, 30, 22, 3, 45, 28, 8, 26, 23, 30, 12, 28, 15, 30, 3, 10, 117, 30, 3, 23, 45, 28, 4, 31, 24, 30, 11, 31, 15, 30, 7, 7,
116, 30, 21, 7, 45, 28, 1, 37, 23, 30, 19, 26, 15, 30, 5, 10, 115, 30, 19, 10, 47, 28, 15, 25, 24, 30, 23, 25, 15, 30, 13, 3,
115, 30, 2, 29, 46, 28, 42, 1, 24, 30, 23, 28, 15, 30, 17, 0, 115, 30, 10, 23, 46, 28, 10, 35, 24, 30, 19, 35, 15, 30, 17, 1,
115, 30, 14, 21, 46, 28, 29, 19, 24, 30, 11, 46, 15, 30, 13, 6, 115, 30, 14, 23, 46, 28, 44, 7, 24, 30, 59, 1, 16, 30, 12, 7,
121, 30, 12, 26, 47, 28, 39, 14, 24, 30, 22, 41, 15, 30, 6, 14, 121, 30, 6, 34, 47, 28, 46, 10, 24, 30, 2, 64, 15, 30, 17, 4,
122, 30, 29, 14, 46, 28, 49, 10, 24, 30, 24, 46, 15, 30, 4, 18, 122, 30, 13, 32, 46, 28, 48, 14, 24, 30, 42, 32, 15, 30, 20,
4, 117, 30, 40, 7, 47, 28, 43, 22, 24, 30, 10, 67, 15, 30, 19, 6, 118, 30, 18, 31, 47, 28, 34, 34, 24, 30, 20, 61, 15, 30
];
// Galois field log table
var glog = [
0xff, 0x00, 0x01, 0x19, 0x02, 0x32, 0x1a, 0xc6, 0x03, 0xdf, 0x33, 0xee, 0x1b, 0x68, 0xc7, 0x4b, 0x04, 0x64, 0xe0, 0x0e, 0x34,
0x8d, 0xef, 0x81, 0x1c, 0xc1, 0x69, 0xf8, 0xc8, 0x08, 0x4c, 0x71, 0x05, 0x8a, 0x65, 0x2f, 0xe1, 0x24, 0x0f, 0x21, 0x35, 0x93,
0x8e, 0xda, 0xf0, 0x12, 0x82, 0x45, 0x1d, 0xb5, 0xc2, 0x7d, 0x6a, 0x27, 0xf9, 0xb9, 0xc9, 0x9a, 0x09, 0x78, 0x4d, 0xe4, 0x72,
0xa6, 0x06, 0xbf, 0x8b, 0x62, 0x66, 0xdd, 0x30, 0xfd, 0xe2, 0x98, 0x25, 0xb3, 0x10, 0x91, 0x22, 0x88, 0x36, 0xd0, 0x94, 0xce,
0x8f, 0x96, 0xdb, 0xbd, 0xf1, 0xd2, 0x13, 0x5c, 0x83, 0x38, 0x46, 0x40, 0x1e, 0x42, 0xb6, 0xa3, 0xc3, 0x48, 0x7e, 0x6e, 0x6b,
0x3a, 0x28, 0x54, 0xfa, 0x85, 0xba, 0x3d, 0xca, 0x5e, 0x9b, 0x9f, 0x0a, 0x15, 0x79, 0x2b, 0x4e, 0xd4, 0xe5, 0xac, 0x73, 0xf3,
0xa7, 0x57, 0x07, 0x70, 0xc0, 0xf7, 0x8c, 0x80, 0x63, 0x0d, 0x67, 0x4a, 0xde, 0xed, 0x31, 0xc5, 0xfe, 0x18, 0xe3, 0xa5, 0x99,
0x77, 0x26, 0xb8, 0xb4, 0x7c, 0x11, 0x44, 0x92, 0xd9, 0x23, 0x20, 0x89, 0x2e, 0x37, 0x3f, 0xd1, 0x5b, 0x95, 0xbc, 0xcf, 0xcd,
0x90, 0x87, 0x97, 0xb2, 0xdc, 0xfc, 0xbe, 0x61, 0xf2, 0x56, 0xd3, 0xab, 0x14, 0x2a, 0x5d, 0x9e, 0x84, 0x3c, 0x39, 0x53, 0x47,
0x6d, 0x41, 0xa2, 0x1f, 0x2d, 0x43, 0xd8, 0xb7, 0x7b, 0xa4, 0x76, 0xc4, 0x17, 0x49, 0xec, 0x7f, 0x0c, 0x6f, 0xf6, 0x6c, 0xa1,
0x3b, 0x52, 0x29, 0x9d, 0x55, 0xaa, 0xfb, 0x60, 0x86, 0xb1, 0xbb, 0xcc, 0x3e, 0x5a, 0xcb, 0x59, 0x5f, 0xb0, 0x9c, 0xa9, 0xa0,
0x51, 0x0b, 0xf5, 0x16, 0xeb, 0x7a, 0x75, 0x2c, 0xd7, 0x4f, 0xae, 0xd5, 0xe9, 0xe6, 0xe7, 0xad, 0xe8, 0x74, 0xd6, 0xf4, 0xea,
0xa8, 0x50, 0x58, 0xaf
];
// Galios field exponent table
var gexp = [
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1d, 0x3a, 0x74, 0xe8, 0xcd, 0x87, 0x13, 0x26, 0x4c, 0x98, 0x2d, 0x5a, 0xb4,
0x75, 0xea, 0xc9, 0x8f, 0x03, 0x06, 0x0c, 0x18, 0x30, 0x60, 0xc0, 0x9d, 0x27, 0x4e, 0x9c, 0x25, 0x4a, 0x94, 0x35, 0x6a, 0xd4,
0xb5, 0x77, 0xee, 0xc1, 0x9f, 0x23, 0x46, 0x8c, 0x05, 0x0a, 0x14, 0x28, 0x50, 0xa0, 0x5d, 0xba, 0x69, 0xd2, 0xb9, 0x6f, 0xde,
0xa1, 0x5f, 0xbe, 0x61, 0xc2, 0x99, 0x2f, 0x5e, 0xbc, 0x65, 0xca, 0x89, 0x0f, 0x1e, 0x3c, 0x78, 0xf0, 0xfd, 0xe7, 0xd3, 0xbb,
0x6b, 0xd6, 0xb1, 0x7f, 0xfe, 0xe1, 0xdf, 0xa3, 0x5b, 0xb6, 0x71, 0xe2, 0xd9, 0xaf, 0x43, 0x86, 0x11, 0x22, 0x44, 0x88, 0x0d,
0x1a, 0x34, 0x68, 0xd0, 0xbd, 0x67, 0xce, 0x81, 0x1f, 0x3e, 0x7c, 0xf8, 0xed, 0xc7, 0x93, 0x3b, 0x76, 0xec, 0xc5, 0x97, 0x33,
0x66, 0xcc, 0x85, 0x17, 0x2e, 0x5c, 0xb8, 0x6d, 0xda, 0xa9, 0x4f, 0x9e, 0x21, 0x42, 0x84, 0x15, 0x2a, 0x54, 0xa8, 0x4d, 0x9a,
0x29, 0x52, 0xa4, 0x55, 0xaa, 0x49, 0x92, 0x39, 0x72, 0xe4, 0xd5, 0xb7, 0x73, 0xe6, 0xd1, 0xbf, 0x63, 0xc6, 0x91, 0x3f, 0x7e,
0xfc, 0xe5, 0xd7, 0xb3, 0x7b, 0xf6, 0xf1, 0xff, 0xe3, 0xdb, 0xab, 0x4b, 0x96, 0x31, 0x62, 0xc4, 0x95, 0x37, 0x6e, 0xdc, 0xa5,
0x57, 0xae, 0x41, 0x82, 0x19, 0x32, 0x64, 0xc8, 0x8d, 0x07, 0x0e, 0x1c, 0x38, 0x70, 0xe0, 0xdd, 0xa7, 0x53, 0xa6, 0x51, 0xa2,
0x59, 0xb2, 0x79, 0xf2, 0xf9, 0xef, 0xc3, 0x9b, 0x2b, 0x56, 0xac, 0x45, 0x8a, 0x09, 0x12, 0x24, 0x48, 0x90, 0x3d, 0x7a, 0xf4,
0xf5, 0xf7, 0xf3, 0xfb, 0xeb, 0xcb, 0x8b, 0x0b, 0x16, 0x2c, 0x58, 0xb0, 0x7d, 0xfa, 0xe9, 0xcf, 0x83, 0x1b, 0x36, 0x6c, 0xd8,
0xad, 0x47, 0x8e, 0x00
];
// Working buffers:
// data input and ecc append, image working buffer, fixed part of image, run lengths for badness
var strinbuf = [],
eccbuf = [],
qrframe = [],
framask = [],
rlens = [];
// Control values - width is based on version, last 4 are from table.
var version, width, neccblk1, neccblk2, datablkw, eccblkwid;
var ecclevel = 2;
// set bit to indicate cell in qrframe is immutable. symmetric around diagonal
function setmask(x, y) {
var bt;
if (x > y) {
bt = x;
x = y;
y = bt;
}
// y*y = 1+3+5...
bt = y;
bt *= y;
bt += y;
bt >>= 1;
bt += x;
framask[bt] = 1;
}
// enter alignment pattern - black to qrframe, white to mask (later black frame merged to mask)
function putalign(x, y) {
var j;
qrframe[x + width * y] = 1;
for (j = -2; j < 2; j++) {
qrframe[x + j + width * (y - 2)] = 1;
qrframe[x - 2 + width * (y + j + 1)] = 1;
qrframe[x + 2 + width * (y + j)] = 1;
qrframe[x + j + 1 + width * (y + 2)] = 1;
}
for (j = 0; j < 2; j++) {
setmask(x - 1, y + j);
setmask(x + 1, y - j);
setmask(x - j, y - 1);
setmask(x + j, y + 1);
}
}
//========================================================================
// Reed Solomon error correction
// exponentiation mod N
function modnn(x) {
while (x >= 255) {
x -= 255;
x = (x >> 8) + (x & 255);
}
return x;
}
var genpoly = [];
// Calculate and append ECC data to data block. Block is in strinbuf, indexes to buffers given.
function appendrs(data, dlen, ecbuf, eclen) {
var i, j, fb;
for (i = 0; i < eclen; i++) strinbuf[ecbuf + i] = 0;
for (i = 0; i < dlen; i++) {
fb = glog[strinbuf[data + i] ^ strinbuf[ecbuf]];
if (fb != 255)
/* fb term is non-zero */
for (j = 1; j < eclen; j++) strinbuf[ecbuf + j - 1] = strinbuf[ecbuf + j] ^ gexp[modnn(fb + genpoly[eclen - j])];
else for (j = ecbuf; j < ecbuf + eclen; j++) strinbuf[j] = strinbuf[j + 1];
strinbuf[ecbuf + eclen - 1] = fb == 255 ? 0 : gexp[modnn(fb + genpoly[0])];
}
}
//========================================================================
// Frame data insert following the path rules
// check mask - since symmetrical use half.
function ismasked(x, y) {
var bt;
if (x > y) {
bt = x;
x = y;
y = bt;
}
bt = y;
bt += y * y;
bt >>= 1;
bt += x;
return framask[bt];
}
//========================================================================
// Apply the selected mask out of the 8.
function applymask(m) {
var x, y, r3x, r3y;
switch (m) {
case 0:
for (y = 0; y < width; y++)
for (x = 0; x < width; x++) if (!((x + y) & 1) && !ismasked(x, y)) qrframe[x + y * width] ^= 1;
break;
case 1:
for (y = 0; y < width; y++) for (x = 0; x < width; x++) if (!(y & 1) && !ismasked(x, y)) qrframe[x + y * width] ^= 1;
break;
case 2:
for (y = 0; y < width; y++)
for (r3x = 0, x = 0; x < width; x++, r3x++) {
if (r3x == 3) r3x = 0;
if (!r3x && !ismasked(x, y)) qrframe[x + y * width] ^= 1;
}
break;
case 3:
for (r3y = 0, y = 0; y < width; y++, r3y++) {
if (r3y == 3) r3y = 0;
for (r3x = r3y, x = 0; x < width; x++, r3x++) {
if (r3x == 3) r3x = 0;
if (!r3x && !ismasked(x, y)) qrframe[x + y * width] ^= 1;
}
}
break;
case 4:
for (y = 0; y < width; y++)
for (r3x = 0, r3y = (y >> 1) & 1, x = 0; x < width; x++, r3x++) {
if (r3x == 3) {
r3x = 0;
r3y = !r3y;
}
if (!r3y && !ismasked(x, y)) qrframe[x + y * width] ^= 1;
}
break;
case 5:
for (r3y = 0, y = 0; y < width; y++, r3y++) {
if (r3y == 3) r3y = 0;
for (r3x = 0, x = 0; x < width; x++, r3x++) {
if (r3x == 3) r3x = 0;
if (!((x & y & 1) + !(!r3x | !r3y)) && !ismasked(x, y)) qrframe[x + y * width] ^= 1;
}
}
break;
case 6:
for (r3y = 0, y = 0; y < width; y++, r3y++) {
if (r3y == 3) r3y = 0;
for (r3x = 0, x = 0; x < width; x++, r3x++) {
if (r3x == 3) r3x = 0;
if (!(((x & y & 1) + (r3x && r3x == r3y)) & 1) && !ismasked(x, y)) qrframe[x + y * width] ^= 1;
}
}
break;
case 7:
for (r3y = 0, y = 0; y < width; y++, r3y++) {
if (r3y == 3) r3y = 0;
for (r3x = 0, x = 0; x < width; x++, r3x++) {
if (r3x == 3) r3x = 0;
if (!(((r3x && r3x == r3y) + ((x + y) & 1)) & 1) && !ismasked(x, y)) qrframe[x + y * width] ^= 1;
}
}
break;
}
return;
}
// Badness coefficients.
var N1 = 3,
N2 = 3,
N3 = 40,
N4 = 10;
// Using the table of the length of each run, calculate the amount of bad image
// - long runs or those that look like finders; called twice, once each for X and Y
function badruns(length) {
var i;
var runsbad = 0;
for (i = 0; i <= length; i++) if (rlens[i] >= 5) runsbad += N1 + rlens[i] - 5;
// BwBBBwB as in finder
for (i = 3; i < length - 1; i += 2)
if (
rlens[i - 2] == rlens[i + 2] &&
rlens[i + 2] == rlens[i - 1] &&
rlens[i - 1] == rlens[i + 1] &&
rlens[i - 1] * 3 == rlens[i] &&
// white around the black pattern? Not part of spec
(rlens[i - 3] == 0 || // beginning
i + 3 > length || // end
rlens[i - 3] * 3 >= rlens[i] * 4 ||
rlens[i + 3] * 3 >= rlens[i] * 4)
)
runsbad += N3;
return runsbad;
}
// Calculate how bad the masked image is - blocks, imbalance, runs, or finders.
function badcheck() {
var x, y, h, b, b1;
var thisbad = 0;
var bw = 0;
// blocks of same color.
for (y = 0; y < width - 1; y++)
for (x = 0; x < width - 1; x++)
if (
(qrframe[x + width * y] &&
qrframe[x + 1 + width * y] &&
qrframe[x + width * (y + 1)] &&
qrframe[x + 1 + width * (y + 1)]) || // all black
!(
qrframe[x + width * y] ||
qrframe[x + 1 + width * y] ||
qrframe[x + width * (y + 1)] ||
qrframe[x + 1 + width * (y + 1)]
)
)
// all white
thisbad += N2;
// X runs
for (y = 0; y < width; y++) {
rlens[0] = 0;
for (h = b = x = 0; x < width; x++) {
if ((b1 = qrframe[x + width * y]) == b) rlens[h]++;
else rlens[++h] = 1;
b = b1;
bw += b ? 1 : -1;
}
thisbad += badruns(h);
}
// black/white imbalance
if (bw < 0) bw = -bw;
var big = bw;
var count = 0;
big += big << 2;
big <<= 1;
while (big > width * width) (big -= width * width), count++;
thisbad += count * N4;
// Y runs
for (x = 0; x < width; x++) {
rlens[0] = 0;
for (h = b = y = 0; y < width; y++) {
if ((b1 = qrframe[x + width * y]) == b) rlens[h]++;
else rlens[++h] = 1;
b = b1;
}
thisbad += badruns(h);
}
return thisbad;
}
function genframe(instring) {
var x, y, k, t, v, i, j, m;
// find the smallest version that fits the string
t = instring.length;
version = 0;
do {
version++;
k = (ecclevel - 1) * 4 + (version - 1) * 16;
neccblk1 = eccblocks[k++];
neccblk2 = eccblocks[k++];
datablkw = eccblocks[k++];
eccblkwid = eccblocks[k];
k = datablkw * (neccblk1 + neccblk2) + neccblk2 - 3 + (version <= 9);
if (t <= k) break;
} while (version < 40);
// FIXME - insure that it fits insted of being truncated
width = 17 + 4 * version;
// allocate, clear and setup data structures
v = datablkw + (datablkw + eccblkwid) * (neccblk1 + neccblk2) + neccblk2;
for (t = 0; t < v; t++) eccbuf[t] = 0;
strinbuf = instring.slice(0);
for (t = 0; t < width * width; t++) qrframe[t] = 0;
for (t = 0; t < (width * (width + 1) + 1) / 2; t++) framask[t] = 0;
// insert finders - black to frame, white to mask
for (t = 0; t < 3; t++) {
k = 0;
y = 0;
if (t == 1) k = width - 7;
if (t == 2) y = width - 7;
qrframe[y + 3 + width * (k + 3)] = 1;
for (x = 0; x < 6; x++) {
qrframe[y + x + width * k] = 1;
qrframe[y + width * (k + x + 1)] = 1;
qrframe[y + 6 + width * (k + x)] = 1;
qrframe[y + x + 1 + width * (k + 6)] = 1;
}
for (x = 1; x < 5; x++) {
setmask(y + x, k + 1);
setmask(y + 1, k + x + 1);
setmask(y + 5, k + x);
setmask(y + x + 1, k + 5);
}
for (x = 2; x < 4; x++) {
qrframe[y + x + width * (k + 2)] = 1;
qrframe[y + 2 + width * (k + x + 1)] = 1;
qrframe[y + 4 + width * (k + x)] = 1;
qrframe[y + x + 1 + width * (k + 4)] = 1;
}
}
// alignment blocks
if (version > 1) {
t = adelta[version];
y = width - 7;
for (;;) {
x = width - 7;
while (x > t - 3) {
putalign(x, y);
if (x < t) break;
x -= t;
}
if (y <= t + 9) break;
y -= t;
putalign(6, y);
putalign(y, 6);
}
}
// single black
qrframe[8 + width * (width - 8)] = 1;
// timing gap - mask only
for (y = 0; y < 7; y++) {
setmask(7, y);
setmask(width - 8, y);
setmask(7, y + width - 7);
}
for (x = 0; x < 8; x++) {
setmask(x, 7);
setmask(x + width - 8, 7);
setmask(x, width - 8);
}
// reserve mask-format area
for (x = 0; x < 9; x++) setmask(x, 8);
for (x = 0; x < 8; x++) {
setmask(x + width - 8, 8);
setmask(8, x);
}
for (y = 0; y < 7; y++) setmask(8, y + width - 7);
// timing row/col
for (x = 0; x < width - 14; x++)
if (x & 1) {
setmask(8 + x, 6);
setmask(6, 8 + x);
} else {
qrframe[8 + x + width * 6] = 1;
qrframe[6 + width * (8 + x)] = 1;
}
// version block
if (version > 6) {
t = vpat[version - 7];
k = 17;
for (x = 0; x < 6; x++)
for (y = 0; y < 3; y++, k--)
if (1 & (k > 11 ? version >> (k - 12) : t >> k)) {
qrframe[5 - x + width * (2 - y + width - 11)] = 1;
qrframe[2 - y + width - 11 + width * (5 - x)] = 1;
} else {
setmask(5 - x, 2 - y + width - 11);
setmask(2 - y + width - 11, 5 - x);
}
}
// sync mask bits - only set above for white spaces, so add in black bits
for (y = 0; y < width; y++) for (x = 0; x <= y; x++) if (qrframe[x + width * y]) setmask(x, y);
// convert string to bitstream
// 8 bit data to QR-coded 8 bit data (numeric or alphanum, or kanji not supported)
v = strinbuf.length;
// string to array
for (i = 0; i < v; i++) eccbuf[i] = strinbuf.charCodeAt(i);
strinbuf = eccbuf.slice(0);
// calculate max string length
x = datablkw * (neccblk1 + neccblk2) + neccblk2;
if (v >= x - 2) {
v = x - 2;
if (version > 9) v--;
}
// shift and repack to insert length prefix
i = v;
if (version > 9) {
strinbuf[i + 2] = 0;
strinbuf[i + 3] = 0;
while (i--) {
t = strinbuf[i];
strinbuf[i + 3] |= 255 & (t << 4);
strinbuf[i + 2] = t >> 4;
}
strinbuf[2] |= 255 & (v << 4);
strinbuf[1] = v >> 4;
strinbuf[0] = 0x40 | (v >> 12);
} else {
strinbuf[i + 1] = 0;
strinbuf[i + 2] = 0;
while (i--) {
t = strinbuf[i];
strinbuf[i + 2] |= 255 & (t << 4);
strinbuf[i + 1] = t >> 4;
}
strinbuf[1] |= 255 & (v << 4);
strinbuf[0] = 0x40 | (v >> 4);
}
// fill to end with pad pattern
i = v + 3 - (version < 10);
while (i < x) {
strinbuf[i++] = 0xec;
// buffer has room if (i == x) break;
strinbuf[i++] = 0x11;
}
// calculate and append ECC
// calculate generator polynomial
genpoly[0] = 1;
for (i = 0; i < eccblkwid; i++) {
genpoly[i + 1] = 1;
for (j = i; j > 0; j--) genpoly[j] = genpoly[j] ? genpoly[j - 1] ^ gexp[modnn(glog[genpoly[j]] + i)] : genpoly[j - 1];
genpoly[0] = gexp[modnn(glog[genpoly[0]] + i)];
}
for (i = 0; i <= eccblkwid; i++) genpoly[i] = glog[genpoly[i]]; // use logs for genpoly[] to save calc step
// append ecc to data buffer
k = x;
y = 0;
for (i = 0; i < neccblk1; i++) {
appendrs(y, datablkw, k, eccblkwid);
y += datablkw;
k += eccblkwid;
}
for (i = 0; i < neccblk2; i++) {
appendrs(y, datablkw + 1, k, eccblkwid);
y += datablkw + 1;
k += eccblkwid;
}
// interleave blocks
y = 0;
for (i = 0; i < datablkw; i++) {
for (j = 0; j < neccblk1; j++) eccbuf[y++] = strinbuf[i + j * datablkw];
for (j = 0; j < neccblk2; j++) eccbuf[y++] = strinbuf[neccblk1 * datablkw + i + j * (datablkw + 1)];
}
for (j = 0; j < neccblk2; j++) eccbuf[y++] = strinbuf[neccblk1 * datablkw + i + j * (datablkw + 1)];
for (i = 0; i < eccblkwid; i++) for (j = 0; j < neccblk1 + neccblk2; j++) eccbuf[y++] = strinbuf[x + i + j * eccblkwid];
strinbuf = eccbuf;
// pack bits into frame avoiding masked area.
x = y = width - 1;
k = v = 1; // up, minus
/* inteleaved data and ecc codes */
m = (datablkw + eccblkwid) * (neccblk1 + neccblk2) + neccblk2;
for (i = 0; i < m; i++) {
t = strinbuf[i];
for (j = 0; j < 8; j++, t <<= 1) {
if (0x80 & t) qrframe[x + width * y] = 1;
do {
// find next fill position
if (v) x--;
else {
x++;
if (k) {
if (y != 0) y--;
else {
x -= 2;
k = !k;
if (x == 6) {
x--;
y = 9;
}
}
} else {
if (y != width - 1) y++;
else {
x -= 2;
k = !k;
if (x == 6) {
x--;
y -= 8;
}
}
}
}
v = !v;
} while (ismasked(x, y));
}
}
// save pre-mask copy of frame
strinbuf = qrframe.slice(0);
t = 0; // best
y = 30000; // demerit
// for instead of while since in original arduino code
// if an early mask was "good enough" it wouldn't try for a better one
// since they get more complex and take longer.
for (k = 0; k < 8; k++) {
applymask(k); // returns black-white imbalance
x = badcheck();
if (x < y) {
// current mask better than previous best?
y = x;
t = k;
}
if (t == 7) break; // don't increment i to a void redoing mask
qrframe = strinbuf.slice(0); // reset for next pass
}
if (t != k)
// redo best mask - none good enough, last wasn't t
applymask(t);
// add in final mask/ecclevel bytes
y = fmtword[t + ((ecclevel - 1) << 3)];
// low byte
for (k = 0; k < 8; k++, y >>= 1)
if (y & 1) {
qrframe[width - 1 - k + width * 8] = 1;
if (k < 6) qrframe[8 + width * k] = 1;
else qrframe[8 + width * (k + 1)] = 1;
}
// high byte
for (k = 0; k < 7; k++, y >>= 1)
if (y & 1) {
qrframe[8 + width * (width - 7 + k)] = 1;
if (k) qrframe[6 - k + width * 8] = 1;
else qrframe[7 + width * 8] = 1;
}
return qrframe;
}
var _canvas = null;
var api = {
get ecclevel() {
return ecclevel;
},
set ecclevel(val) {
ecclevel = val;
},
get size() {
return _size;
},
set size(val) {
_size = val;
},
get canvas() {
return _canvas;
},
set canvas(el) {
_canvas = el;
},
drawRoundRectPath: function (cxt, width, height, radius) {
cxt.beginPath(0);
//从右下角顺时针绘制,弧度从0到1/2PI
cxt.arc(width - radius, height - radius, radius, 0, Math.PI / 2);
//矩形下边线
cxt.lineTo(radius, height);
//左下角圆弧,弧度从1/2PI到PI
cxt.arc(radius, height - radius, radius, Math.PI / 2, Math.PI);
//矩形左边线
cxt.lineTo(0, radius);
//左上角圆弧,弧度从PI到3/2PI
cxt.arc(radius, radius, radius, Math.PI, (Math.PI * 3) / 2);
//上边线
cxt.lineTo(width - radius, 0);
//右上角圆弧
cxt.arc(width - radius, radius, radius, (Math.PI * 3) / 2, Math.PI * 2);
//右边线
cxt.lineTo(width, height - radius);
cxt.closePath();
},
/**该方法用来绘制一个有填充色的圆角矩形
*@param cxt:canvas的上下文环境
*@param x:左上角x轴坐标
*@param y:左上角y轴坐标
*@param width:矩形的宽度
*@param height:矩形的高度
*@param radius:圆的半径
*@param fillColor:填充颜色
**/
fillRoundRect: function (cxt, x, y, width, height, radius, /*optional*/ fillColor) {
//圆的直径必然要小于矩形的宽高
if (2 * radius > width || 2 * radius > height) {
return false;
}
cxt.save();
cxt.translate(x, y);
//绘制圆角矩形的各个边
this.drawRoundRectPath(cxt, width, height, radius);
cxt.fillStyle = fillColor || '#000'; //若是给定了值就用给定的值否则给予默认值
cxt.fill();
cxt.restore();
},
getFrame: function (string) {
return genframe(string);
},
//这里的utf16to8(str)是对Text中的字符串进行转码,让其支持中文
utf16to8: function (str) {
var out, i, len, c;
out = '';
len = str && str.length;
for (i = 0; i < len; i++) {
c = str.charCodeAt(i);
if (c >= 0x0001 && c <= 0x007f) {
out += str.charAt(i);
} else if (c > 0x07ff) {
out += String.fromCharCode(0xe0 | ((c >> 12) & 0x0f));
out += String.fromCharCode(0x80 | ((c >> 6) & 0x3f));
out += String.fromCharCode(0x80 | ((c >> 0) & 0x3f));
} else {
out += String.fromCharCode(0xc0 | ((c >> 6) & 0x1f));
out += String.fromCharCode(0x80 | ((c >> 0) & 0x3f));
}
}
return out;
},
/**
* 新的绘制方法,用于在指定的画布上绘制二维码。
* @param {Function} createSelectorQuery - 用于创建选择器查询的函数。
* @param {string} str - 要编码为二维码的字符串。
* @param {string} _canvasId - 画布的ID(可选)。
* @param {number} cavW - 画布的宽度。
* @param {number} cavH - 画布的高度。
* @param {Object} $this - 组件的上下文,允许在组件中生成二维码。
* @param {number} ecc - 错误纠正级别(可选)。
* @param {Function} callBack - 绘制完成后的回调函数。
* @param {HTMLCanvasElement} _Canvas - 画布元素。
* @param {number} dpr - 设备像素比,用于高分辨率屏幕。
*/
newDraw: async function (
createSelectorQuery,
str,
_canvasId,
cavW,
cavH,
$this,
ecc,
callBack,
_Canvas,
dpr,
fillStyle,
fillBgStyle = '#ffffff'
) {
var that = this; // 保存当前上下文
ecclevel = ecc || ecclevel; // 设置错误纠正级别,如果未提供则使用默认值
const canvasId = _canvasId || _canvas; // 获取画布ID,如果未提供则使用默认画布
// 检查是否提供了画布
if (!canvasId) {
console.warn('No canvas provided to draw QR code in!'); // 如果没有画布,发出警告
return; // 退出函数
}
var size = Math.min(cavW, cavH); // 计算画布的最小尺寸
str = that.utf16to8(str); // 将字符串转换为UTF-8格式,以支持中文
var frame = that.getFrame(str), // 获取二维码的帧数据
px = Math.round(size / (width + 8)); // 计算每个二维码单元的像素大小
var ctx = _Canvas.getContext('2d'); // 获取2D绘图上下文
_Canvas.width = cavW * dpr; // 设置画布宽度,考虑设备像素比
_Canvas.height = cavH * dpr; // 设置画布高度,考虑设备像素比
ctx.scale(dpr, dpr); // 缩放上下文以适应高分辨率
var roundedSize = px * (width + 8), // 计算绘制的二维码的总大小
offset = Math.floor((size - roundedSize) / 2); // 计算偏移量以居中二维码
size = roundedSize; // 更新大小变量
ctx.fillStyle = '#FEF5E0'; // 设置填充颜色为白色
this.fillRoundRect(ctx, 0, 0, cavW, cavW, 10, /*optional*/ fillBgStyle); // 绘制圆角矩形背景
ctx.fillStyle = '#FF7D00'; // 设置填充颜色为黑色
// 绘制二维码的每个模块
for (var i = 0; i < width; i++) {
for (var j = 0; j < width; j++) {
if (frame[j * width + i]) {
// 如果当前模块是黑色
ctx.fillRect(px * (4 + i) + offset, px * (4 + j) + offset, px, px); // 绘制黑色矩形
}
}
}
callBack && callBack(); // 如果提供了回调函数,则执行它
}
};
module.exports = { api };
// exports.draw = api;
})();
qrcode-helper.ts:创建二维码的增强辅助函数,支持自定义样式和高清显示
// qrcode-helper.ts
/**
* 创建二维码的增强辅助函数,支持自定义样式和高清显示
*
* @param {Object} _this - 组件实例的this引用,用于上下文绑定
* @param {string} qrCode - 需要生成二维码的字符串内容
* @param {string} canvasId - canvas元素的ID标识符
* @param {number} cavW - canvas的宽度(单位:px)
* @param {number} cavH - canvas的高度(单位:px)
* @param {Function} success - 成功回调函数,参数为生成的临时文件路径
* @param {Function} fail - 失败回调函数,参数为错误信息对象
* @param {Function} complete - 完成回调函数,无论成功失败都会执行
* @param {HTMLCanvasElement} _Canvas - canvas DOM元素实例
* @param {number} dpr - 设备像素比,用于处理高清屏幕显示
* @param {string} [fillStyle] - 二维码前景色,可选参数,默认为黑色
* @param {string} [fillBgStyle] - 二维码背景色,可选参数,默认为白色
*
* @example
*
* newCreateQrCodeHelper(
* this,
* 'https://example.com',
* 'qrCanvas',
* 200,
* 200,
* (tempFilePath) => console.log('成功:', tempFilePath),
* (error) => console.error('失败:', error),
* () => console.log('完成'),
* canvasElement,
* 2,
* '#000000',
* '#ffffff'
* );
*
*
* @description
* 该函数主要用于在小程序环境中生成二维码,具有以下特点:
* 1. 支持高清显示,通过dpr参数适配不同设备
* 2. 可自定义二维码颜色样式
* 3. 支持成功/失败/完成三种回调
* 4. 仅支持微信小程序环境(WEAPP)
*
* @throws {Error} 当运行环境不是微信小程序时,会通过fail回调返回错误
*
* @returns {void}
*/
export function newCreateQrCodeHelper(
_this,
qrCode,
canvasId,
cavW,
cavH,
success,
fail,
complete,
_Canvas,
dpr,
fillStyle,
fillBgStyle
) {
// 获取当前运行环境
const env = Taro.getEnv();
// 判断是否在微信小程序环境中
if (env === 'WEAPP') {
// 调用QR.api.newDraw方法绘制二维码
QR.api.newDraw(
Taro.createSelectorQuery, // 创建选择器查询对象的函数
qrCode, // 二维码内容
canvasId, // Canvas ID
cavW, // 画布宽度
cavH, // 画布高度
_this, // 组件实例引用
null, // 二维码配置项,这里使用默认值
// 绘制完成后的回调,将画布内容转换为图片
() => newCanvasToTempFilePath(
_Canvas, // Canvas实例
cavW, // 宽度
cavH, // 高度
success, // 成功回调
fail, // 失败回调
complete, // 完成回调
_this // 组件实例引用
),
_Canvas, // Canvas实例
dpr, // 设备像素比
fillStyle, // 二维码前景色
fillBgStyle // 二维码背景色
);
} else {
// 如果不是在微信小程序环境中,调用失败回调
fail({ errorMessage: `不支持的平台:${env}` });
}
}
2. 海报组件实现
export default class InvitePoster extends Component {
state = {
isLoading: false,
posterImage: '',
}
/**
* 创建动态二维码并处理相关逻辑
* @param str 需要生成二维码的字符串
* @param canvasId canvas元素的ID
* @param cavW canvas宽度
* @param cavH canvas高度
* @param retryCount 重试次数,默认3次
*/
async createQrCode(str: string, canvasId: string, cavW: number, cavH: number, retryCount = 3) {
// 检查重试次数
if (retryCount <= 0) {
console.error('二维码生成重试次数已用完');
Taro.showToast({
title: '生成失败,请重试',
icon: 'none'
});
return;
}
let isDrawing = false;
try {
// 获取canvas实例
const _canvas = await this.getCanvas(canvasId);
const dpr = Taro.getSystemInfoSync().pixelRatio;
// 生成二维码
newCreateQrCodeHelper(
this,
str,
canvasId,
cavW,
cavH,
(tempFilePath: string) => {
isDrawing = true;
this.createPoster(tempFilePath);
},
(error: Error) => {
this.handleQrCodeError(error, str, canvasId, cavW, cavH, retryCount);
},
() => {
if (!isDrawing) {
console.warn('二维码绘制可能未完成,请检查');
}
},
_canvas,
dpr,
null,
'#FEF5E0'
);
} catch (error) {
this.handleCanvasError();
}
}
/**
* 创建分享海报
* 该函数负责将二维码和背景图片合成为一张完整的分享海报
*
* @param {string} qrcode - 已生成的二维码图片的临时路径
*
* @description
* 海报生成流程:
* 1. 创建画布并设置尺寸(适配不同设备)
* 2. 绘制背景图片
* 3. 绘制二维码背景色
* 4. 绘制二维码
* 5. 将画布导出为图片
*
* @example
*
* this.createPoster('tempFilePath/qrcode.png');
*
*/
createPoster(qrcode) {
// 检查二维码参数
console.log('qrcodeqrcodeqrcodeqrcode', qrcode);
var _this = this;
// 参数验证:确保二维码路径存在
if (!qrcode) {
console.error('二维码图片路径为空');
Taro.showToast({
title: '海报生成失败',
icon: 'none'
});
return;
}
// 获取画布尺寸配置
let size = this.setCanvasSize();
// 获取设备像素比,用于高清适配
const dpr = Taro.getSystemInfoSync().pixelRatio;
// 获取画布上下文
Taro.createSelectorQuery()
.select('#poster') // 选择海报画布节点
.node(({ node: canvas }) => {
const context = canvas.getContext('2d');
// 清空画布
context.clearRect(0, 0, canvas.width, canvas.height);
// 设置画布尺寸,考虑设备像素比
canvas.width = windowWidth * dpr; // 画布宽度
canvas.height = ((812 * windowWidth) / 375) * dpr; // 画布高度,保持宽高比
context.scale(dpr, dpr); // 缩放上下文以适应高分辨率
// 创建并加载背景图片
const image1 = canvas.createImage();
image1.onload = () => {
// 绘制背景图片,适配屏幕宽度
context.drawImage(image1, 0, 0, windowWidth, (812 * windowWidth) / 375);
// 绘制二维码背景
context.fillStyle = '#FEF5E0'; // 设置二维码背景色
context.fillRect(size.qrX, size.qrY, size.qw, size.qh);
// 保存当前绘图状态
context.save();
// 创建并加载二维码图片
const image2 = canvas.createImage();
image2.onload = () => {
// 绘制二维码到指定位置
context.drawImage(image2, size.qrX, size.qrY, size.qw, size.qh);
// 延迟导出图片,确保绘制完成
setTimeout(() => {
// 将画布内容导出为图片
wx.canvasToTempFilePath(
{
width: 750, // 输出图片宽度
height: 1624, // 输出图片高度
destWidth: 750 * 2, // 输出图片实际宽度(乘2用于高清显示)
destHeight: 1624 * 2, // 输出图片实际高度
canvas: canvas, // canvas实例,2D接口需要传入
x: 0, // 裁剪起点x坐标
y: 0, // 裁剪起点y坐标
canvasId: 'poster', // 画布标识符
success: function (res) {
// 导出成功,更新状态
console.log('海报成功:', res.tempFilePath);
console.log({ posterImage: res });
_this.setState({
posterImage: res.tempFilePath,
isLoading: false
});
},
fail: err => {
// 导出失败,提示重试
Taro.showModal({
title: '生成海报失败,请重试',
showCancel: false,
success: () => {
_this.createPoster(qrcode); // 失败后重试
}
});
}
},
canvas
);
}, 200); // 给予200ms延迟确保绘制完成
};
// 设置二维码图片源
image2.src = qrcode;
};
// 设置背景图片源,本地图片
image1.src = require('./images/29.jpg');
})
.exec();
}
/**
* 保存到相册
*/
saveToPhone = () => {
Taro.getSetting({
success: res => {
if (!res.authSetting['scope.writePhotosAlbum']) {
this.requestAlbumAuthorization();
} else {
this.downloadImage();
}
}
});
};
}
3. 页面模板
const Index = () => {
useEffect(()=>{
let shareUrl = getGlobalData('europeanShareUrl');
console.log('海报中的shareUrl', shareUrl);
let size = this.setCanvasSize();
// 开始绘制二维码
setTimeout(() => this.createQrCode(shareUrl, 'mycanvas', size.w, size.h), 300);
},[])
return <View className="invite-poster-page">
{isLoading ? (
<Loading type="modal" show={true} />
) : (
<View className="container">
<Image className="poster-image" src={posterImage} mode="aspectFill" />
<View className="save-btn" onClick={this.saveToPhone}>
保存到手机
</View>
</View>
)}
<Canvas className="qr-canvas" type="2d" id="mycanvas" />
<Canvas className="poster-canvas" type="2d" id="poster" />
</View>
}
关键技术点说明
1. 画布适配
为了确保在不同设备上显示正常,我们需要处理好画布的尺寸适配:
setCanvasSize() {
const systemInfo = Taro.getSystemInfoSync();
const windowWidth = systemInfo.windowWidth;
const designWidth = 750;
const designQrSize = 200;
const scale = windowWidth / designWidth;
const qrSize = Math.round(designQrSize * scale);
return {
w: qrSize,
h: qrSize,
qw: qrSize,
qh: qrSize,
qrX: Math.round(275 * scale),
qrY: Math.round(1280 * scale)
};
}
2. 权限处理
在保存图片到相册时,需要处理权限问题:
requestAlbumAuthorization() {
Taro.authorize({
scope: 'scope.writePhotosAlbum',
success: () => {
this.downloadImage();
},
fail: () => {
Taro.showModal({
content: '未授权,无法保存图片,请前往授权',
success: res => {
if (res.confirm) {
Taro.openSetting();
}
}
});
}
});
}
3. 错误处理
为了提高用户体验,我们需要做好错误处理和重试机制:
handleQrCodeError(error: Error, str: string, canvasId: string, cavW: number, cavH: number, retryCount: number) {
console.error('二维码生成失败:', error);
Taro.showToast({
title: '二维码生成失败,正在重试',
icon: 'none',
duration: 2000
});
setTimeout(() => {
this.createQrCode(str, canvasId, cavW, cavH, retryCount - 1);
}, 1000);
}
注意事项
- Canvas 必须使用 type="2d" 属性
- 需要处理设备像素比(dpr)以支持高清屏幕
- 图片绘制时需要给予足够的延时确保加载完成
- 要合理处理授权失败的情况
- 建议实现重试机制提高成功率
总结
通过以上实现,我们可以在小程序中生成美观的分享海报。关键在于:
- 使用 Canvas 2D API 进行绘制
- 处理好设备适配问题
- 实现完善的错误处理机制
- 注意权限和授权处理
Top comments (0)