Description
Given an array of integers arr
, you are initially positioned at the first index of the array.
In one step you can jump from index i
to index:
-
i + 1
where:i + 1 < arr.length
. -
i - 1
where:i - 1 >= 0
. -
j
where:arr[i] == arr[j]
andi != j
.
Return the minimum number of steps to reach the last index of the array.
Notice that you can not jump outside of the array at any time.
Example 1:
Input: arr = [100,-23,-23,404,100,23,23,23,3,404]
Output: 3
Explanation: You need three jumps from index 0 --> 4 --> 3 --> 9. Note that index 9 is the last index of the array.
Example 2:
Input: arr = [7]
Output: 0
Explanation: Start index is the last index. You do not need to jump.
Example 3:
Input: arr = [7,6,9,6,9,6,9,7]
Output: 1
Explanation: You can jump directly from index 0 to index 7 which is last index of the array.
Constraints:
1 <= arr.length <= 5 * 104
108 <= arr[i] <= 108
Solutions
Solution 1
Intuition
BFS
Put the indexes that can be reached in each step into the queue.
100,-23,-23,404,100,23,23,23,3,404
0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- 0 step: 0
- 1 step: 1, 4
- 2 step: 2, 3, 5
- 3 step: 9(over)
Code
class Solution {
public int minJumps(int[] arr) {
int n = arr.length;
if (n == 1) {
return 0;
}
// number with indexes
Map<Integer, List<Integer>> map = new HashMap<>();
for (int i = 0; i < n; i++) {
List<Integer> list = map.getOrDefault(arr[i], new ArrayList<>());
list.add(i);
map.put(arr[i], list);
}
// bfs
Queue<Integer> queue = new LinkedList<>();
// start at index 0
queue.offer(0);
// init steps with 0
int steps = 0;
while (!queue.isEmpty()) {
steps++;
int size = queue.size();
for (int i = 0; i < size; i++) {
int index = queue.poll();
int number = arr[index];
// left index
if (index - 1 >= 0 && map.containsKey(arr[index - 1])) {
queue.offer(index - 1);
}
// right index
if (index + 1 <= n - 1 && map.containsKey(arr[index + 1])) {
if (index + 1 == n - 1) {
return steps;
}
queue.offer(index + 1);
}
// other indexes with same number
if (map.containsKey(number)) {
for (int sameNumberIndex : map.get(number)) {
if (sameNumberIndex != index) {
if (sameNumberIndex == n - 1) {
return steps;
}
queue.offer(sameNumberIndex);
}
}
}
map.remove(number);
}
}
return steps;
}
}
Complexity
- Time: O(n)
- Space: O(n)
Top comments (0)