DEV Community

Wenqi Jiang
Wenqi Jiang

Posted on

81. Search in Rotated Sorted Array II

Description

There is an integer array nums sorted in non-decreasing order (not necessarily with distinct values).

Before being passed to your function, nums is rotated at an unknown pivot index k (0 <= k < nums.length) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]] (0-indexed). For example, [0,1,2,4,4,4,5,6,6,7] might be rotated at pivot index 5 and become [4,5,6,6,7,0,1,2,4,4].

Given the array nums after the rotation and an integer target, return true if target is in nums, or false if it is not in nums.

You must decrease the overall operation steps as much as possible.

Example 1:

Input: nums = [2,5,6,0,0,1,2], target = 0
Output: true
Enter fullscreen mode Exit fullscreen mode

Example 2:

Input: nums = [2,5,6,0,0,1,2], target = 3
Output: false
Enter fullscreen mode Exit fullscreen mode

Constraints:

  • 1 <= nums.length <= 5000
  • 104 <= nums[i] <= 104
  • nums is guaranteed to be rotated at some pivot.
  • 104 <= target <= 104

Solutions

Solution 1

Intuition

just get in the sorted part

Code

class Solution {
    public boolean search(int[] nums, int target) {
        int l = 0, r = nums.length - 1;
        while (l <= r) {
            while (l < r && nums[l] == nums[l + 1]) {
                l++;
            }
            while (l < r && nums[r] == nums[r - 1]) {
                r--;
            }

            int mid = l + r >> 1;
            if (nums[mid] == target) {
                return true;
            }

            if (nums[l] <= nums[mid]) {
                if (nums[l] <= target && target < nums[mid]) {
                    r = mid - 1;
                } else {
                    l = mid + 1;
                }
            } else {
                if (nums[mid] < target && target <= nums[r]) {
                    l = mid + 1;
                } else {
                    r = mid - 1;
                }
            }
        }
        return false;
    }
}
Enter fullscreen mode Exit fullscreen mode

Complexity

  • Time: O(logn)
  • Space: O(1)

Top comments (0)