Description
There is an integer array nums
sorted in non-decreasing order (not necessarily with distinct values).
Before being passed to your function, nums
is rotated at an unknown pivot index k
(0 <= k < nums.length
) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(0-indexed). For example, [0,1,2,4,4,4,5,6,6,7]
might be rotated at pivot index 5
and become [4,5,6,6,7,0,1,2,4,4]
.
Given the array nums
after the rotation and an integer target
, return true
if target
is in nums
, or false
if it is not in nums
.
You must decrease the overall operation steps as much as possible.
Example 1:
Input: nums = [2,5,6,0,0,1,2], target = 0
Output: true
Example 2:
Input: nums = [2,5,6,0,0,1,2], target = 3
Output: false
Constraints:
1 <= nums.length <= 5000
104 <= nums[i] <= 104
-
nums
is guaranteed to be rotated at some pivot. 104 <= target <= 104
Solutions
Solution 1
Intuition
just get in the sorted part
Code
class Solution {
public boolean search(int[] nums, int target) {
int l = 0, r = nums.length - 1;
while (l <= r) {
while (l < r && nums[l] == nums[l + 1]) {
l++;
}
while (l < r && nums[r] == nums[r - 1]) {
r--;
}
int mid = l + r >> 1;
if (nums[mid] == target) {
return true;
}
if (nums[l] <= nums[mid]) {
if (nums[l] <= target && target < nums[mid]) {
r = mid - 1;
} else {
l = mid + 1;
}
} else {
if (nums[mid] < target && target <= nums[r]) {
l = mid + 1;
} else {
r = mid - 1;
}
}
}
return false;
}
}
Complexity
- Time: O(logn)
- Space: O(1)
Top comments (0)