DEV Community

Cover image for LLM performance optimization solutions
MRUGANK MANOJ RAUT
MRUGANK MANOJ RAUT

Posted on

1

LLM performance optimization solutions

Performance optimization techniques

.
After distributed tranining, LLM practitioners use performance & memory optimization techniques.There are 3 techniques for this.

1.Mixed-Precision training

.
This method uses lower-precision arithmetic and reduces resource utilization. It reduces the workload on CPU and lowers the use of storage. Because of this, we can deploy larger networks with same amount of memory.

2.Gradient Checkpoint

.
This technique stores only subset of intermediate activations and recomputing them during backward pass to reduce memory usage.

3.Operator Fusion

a
Using this technique, we can combine multiple operations into a single one to reduce memory allocation.


Using Purpose-Built Infrastructure

1.AWS Trainium

a
It is second-generation machine-learning accelerator built for deep-learning training.It powers EC2-Trn1 instances.

2.AWS Inferentia

a
It delivers high performance at lowest cost for deep-learning applications. Inf2 instances are used for large-scale gen-AI applications. They use models containing billions of parameters.

LLM practioners can use AWS neuron SDK for HPC.

a


Thank You

Image of Datadog

Create and maintain end-to-end frontend tests

Learn best practices on creating frontend tests, testing on-premise apps, integrating tests into your CI/CD pipeline, and using Datadog’s testing tunnel.

Download The Guide

Top comments (2)

Collapse
 
niki-tech profile image
Niki

Hi I found a opensource, hope it can help.

Enova focuses on LLM Serving scenarios, assisting LLM developers in deploying their trained, fine-tuned, or industry-standard open-source large language models with a single click. It provides adaptive resource recommendations, facilitates testing through the injection of common LLM datasets and custom methods, offers real-time monitoring of service status with visualization of over 30 request metrics, and enables automatic scaling, all aimed at significantly reducing the costs of model deployment and improving GPU utilization for LLM developers
github.com/Emerging-AI/ENOVA

Collapse
 
parth_roy_a1ec4703407d025 profile image
Parth Roy • Edited

great insights

Sentry image

See why 4M developers consider Sentry, “not bad.”

Fixing code doesn’t have to be the worst part of your day. Learn how Sentry can help.

Learn more

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay