DEV Community

Dang Hoang Nhu Nguyen
Dang Hoang Nhu Nguyen

Posted on

[BTY] Day 4: Read through a MLops case study in real scenario

From business context:
Business Context

Turn to an ML System as follows:

The data process in a bond scoring ML system
The data process in a bond scoring ML system

The training and inference pipeline for a bond risk model
The training and inference pipeline for a bond risk model.

I like the wrapping up section of the author:

The best advice I give to companies now is to be proactive about tooling portability. Upgrades to MLOps tooling are going to happen every 18 months to 3 years because there are too many stages of MLOps for one tool to be the jack of all trades and the best in breed practices are evolving. Being able to quickly adapt to the right ensemble of tools for your team and your organization will accelerate the adoption of ML in your organization, and ensure ML can provide convincing value to stakeholders.

Read it here: https://alexchung1.medium.com/case-study-of-mlops-in-a-hedge-fund-from-zero-to-30m-f524b05788ff

Sentry image

See why 4M developers consider Sentry, “not bad.”

Fixing code doesn’t have to be the worst part of your day. Learn how Sentry can help.

Learn more

Top comments (0)

AWS Security LIVE!

Join us for AWS Security LIVE!

Discover the future of cloud security. Tune in live for trends, tips, and solutions from AWS and AWS Partners.

Learn More

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay