Copyright © 2023 PawSQL
Problem
Functionrand(MySQL) or random(PostgreSQL) returns a random floating-point value in the range 0 to 1.0. It is useful to get a random sample of dataset using following query.
select * from orders order by rand() limit 1; 
This works fine if customer table is less than 10,000 rows. But when you have 1,000,000 rows,  the overhead for sorting the rows becomes unacceptable. The reason is quiet clear: we sort all rows, but only keep one.
MySQL Plan
-> Limit: 1 row(s)  (actual time=203.465..203.465 rows=1 loops=1)
    -> Sort: `rand()`, limit input to 1 row(s) per chunk  (actual time=203.464..203.464 rows=1 loops=1)
        -> Stream results  (cost=20540.71 rows=200128) (actual time=0.035..173.789 rows=201800 loops=1)
            -> Table scan on l  (cost=20540.71 rows=200128) (actual time=0.030..121.293 rows=201800 loops=1)
PostgreSQL Plan
Limit  (cost=4962.22..4962.22 rows=1 width=66) (actual time=58.080..58.082 rows=1 loops=1)
  ->  Sort  (cost=4962.22..5391.96 rows=171898 width=66) (actual time=58.078..58.079 rows=1 loops=1)
        Sort Key: (random())
        Sort Method: top-N heapsort  Memory: 25kB
        ->  Seq Scan on orders l  (cost=0.00..4102.73 rows=171898 width=66) (actual time=0.010..26.818 rows=171898 loops=1)
Solutions
- If there is an unique index on a numeric column with uniformly distributed values, the query can be rewrite to more efficient one to avoid full table scan and all row sorting.
create unique index ord_idx_key on orders(o_orderkey)
Rewritten SQL
select
    *
from
    orders
where
    o_orderkey >= (
    select
        floor( RAND() * ((select MAX(o_orderkey) from orders)-(select MIN(o_orderkey) from orders)) + (select MIN(o_orderkey) from orders)))
order by
    o_orderkey
limit 10;
Analyze Plan of MySQL
-> Limit: 10 row(s)  (cost=0.03 rows=3) (actual time=76.877..124.157 rows=10 loops=1)
    -> Filter: (orders.O_ORDERKEY >= floor(((rand() * <cache>(((select #3) - (select #4)))) + (select #5))))  (cost=0.03 rows=3) (actual time=76.876..124.155 rows=10 loops=1)
        -> Index scan on orders using PAW_IDX0334337551  (cost=0.03 rows=10) (actual time=0.015..111.731 rows=106410 loops=1)
        -> Select #3 (subquery in condition; run only once)
            -> Rows fetched before execution  (cost=0.00..0.00 rows=1) (actual time=0.000..0.000 rows=1 loops=1)
        -> Select #4 (subquery in condition; run only once)
            -> Rows fetched before execution  (cost=0.00..0.00 rows=1) (actual time=0.000..0.000 rows=1 loops=1)
        -> Select #5 (subquery in condition; run only once)
            -> Rows fetched before execution  (cost=0.00..0.00 rows=1) (actual time=0.000..0.000 rows=1 loops=1)
Analyze Plan of PostgreSQL
Limit  (cost=1.27..1.44 rows=1 width=66) (actual time=27.840..27.847 rows=1 loops=1)
->  Nested Loop  (cost=1.27..9724.17 rows=57299 width=66) (actual time=27.838..27.845 rows=1 loops=1)
      Join Filter: ((t1.o_orderkey)::double precision >= (floor(((random() * (($1 - $3))::double precision) + ($5)::double precision))))
      Rows Removed by Join Filter: 91974
      ->  Index Scan using ord_idx_key on orders t1  (cost=0.29..6714.94 rows=171898 width=58) (actual time=0.022..9.406 rows=91975 loops=1)
      ->  Materialize  (cost=0.98..1.02 rows=1 width=8) (actual time=0.000..0.000 rows=1 loops=91975)
            ->  Result  (cost=0.98..1.01 rows=1 width=8) (actual time=0.112..0.117 rows=1 loops=1)
                  InitPlan 2 (returns $1)
                    ->  Result  (cost=0.32..0.33 rows=1 width=4) (actual time=0.080..0.082 rows=1 loops=1)
                          InitPlan 1 (returns $0)
                            ->  Limit  (cost=0.29..0.32 rows=1 width=4) (actual time=0.079..0.079 rows=1 loops=1)
                                  ->  Index Only Scan Backward using ord_idx_key on orders  (cost=0.29..3704.51 rows=171898 width=4) (actual time=0.078..0.079 rows=1 loops=1)
                                        Index Cond: (o_orderkey IS NOT NULL)
                                        Heap Fetches: 0
                  InitPlan 4 (returns $3)
                    ->  Result  (cost=0.32..0.33 rows=1 width=4) (actual time=0.013..0.014 rows=1 loops=1)
                          InitPlan 3 (returns $2)
                            ->  Limit  (cost=0.29..0.32 rows=1 width=4) (actual time=0.013..0.013 rows=1 loops=1)
                                  ->  Index Only Scan using ord_idx_key on orders orders_1  (cost=0.29..3704.51 rows=171898 width=4) (actual time=0.013..0.013 rows=1 loops=1)
                                        Index Cond: (o_orderkey IS NOT NULL)
                                        Heap Fetches: 0
                  InitPlan 6 (returns $5)
                    ->  Result  (cost=0.32..0.33 rows=1 width=4) (actual time=0.007..0.009 rows=1 loops=1)
                          InitPlan 5 (returns $4)
                            ->  Limit  (cost=0.29..0.32 rows=1 width=4) (actual time=0.006..0.007 rows=1 loops=1)
                                  ->  Index Only Scan using ord_idx_key on orders orders_2  (cost=0.29..3704.51 rows=171898 width=4) (actual time=0.006..0.007 rows=1 loops=1)
                                        Index Cond: (o_orderkey IS NOT NULL)
                                        Heap Fetches: 0
- Otherwise, we need to create a map table to solve this problem.
   create table orders_key_map ( row_id int not NULL primary key, o_orderkey int not null);
   SET @id = 0;
   INSERT INTO orders_key_map SELECT @id := @id + 1, id FROM holes;
   > select * from orders_key_map;
   +--------+-----------+
   | row_id | o_orderkey |
   +--------+-----------+
   |      1 |         100 |
   |      2 |         102 |
   |      3 |         300 |
   |      4 |         833 |
   |      5 |        1116 |
   +--------+-----------+
And then we can use following SQL to get a random sample of orders table:
   select
    *
   from
    orders o, orders_key_map m
   where
       o.o_orderkey = m.o_orderkey
    m.row_id >= (
    select
        floor( RAND() * ((select MAX(row_id) from orders_key_map)-(select MIN(row_id) from orders_key_map)) + (select MIN(row_id) from orders_key_map)))
   order by
    row_id
   limit 1;
About PawSQL
PawSQL is dedicated to automatic and intelligent database performance optimization. The products provided by PawSQL include:
- PawSQL Cloud, an online automated SQL optimization tool that supports SQL auditing, intelligent query rewriting, cost-based index recommendations, suitable for database administrators and data application developers.
- PawSQL Advisor, an IntelliJ plugin that is suitable for data application developers and can be installed via the IDEA/DataGrip marketplace by searching for "PawSQL Advisor" by name.
- PawSQL Engine, which is the backend optimization engine of the PawSQL series of products, and provides optimization capability through http/json interfaces. PawSQL Engine is provided for deployment and installation as a docker image.
Contact Us
Site: https://app.pawslq.com
Email: service@pawsql.com
Twitter: https://twitter.com/pawsql
 

 
    
Top comments (0)