Forem

Rahul Khinchi
Rahul Khinchi

Posted on

3

Abstract Syntax Tree (AST)

What is AST?

It is a tree representation of the abstract syntactic structure of source code written in a programming language. Each node of the tree denotes a construct occurring in the source code.

Application in compilers

Abstract syntax trees are data structures widely used in compilers to represent the structure of program code. An AST is usually the result of the syntax analysis phase of a compiler. It often serves as an intermediate representation of the program through several stages that the compiler requires, and has a strong impact on the final output of the compiler.

For Example, This is a Source Code.

class GFG {
    public static void main (String[] args) {
        System.out.println("Hello World!");
    }
}
Enter fullscreen mode Exit fullscreen mode

AST of above source code:

CLASS_DEF -> CLASS_DEF [1:0]
|--MODIFIERS -> MODIFIERS [1:0]
|   `--LITERAL_PUBLIC -> public [1:0]
|--LITERAL_CLASS -> class [1:7]
|--IDENT -> GFG [1:13]
`--OBJBLOCK -> OBJBLOCK [1:17]
    |--LCURLY -> { [1:17]
    |--METHOD_DEF -> METHOD_DEF [2:4]
    |   |--MODIFIERS -> MODIFIERS [2:4]
    |   |   |--LITERAL_PUBLIC -> public [2:4]
    |   |   `--LITERAL_STATIC -> static [2:11]
    |   |--TYPE -> TYPE [2:18]
    |   |   `--LITERAL_VOID -> void [2:18]
    |   |--IDENT -> main [2:23]
    |   |--LPAREN -> ( [2:27]
    |   |--PARAMETERS -> PARAMETERS [2:34]
    |   |   `--PARAMETER_DEF -> PARAMETER_DEF [2:34]
    |   |       |--MODIFIERS -> MODIFIERS [2:34]
    |   |       |--TYPE -> TYPE [2:34]
    |   |       |   `--ARRAY_DECLARATOR -> [ [2:34]
    |   |       |       |--IDENT -> String [2:28]
    |   |       |       `--RBRACK -> ] [2:35]
    |   |       `--IDENT -> args [2:37]
    |   |--RPAREN -> ) [2:41]
    |   `--SLIST -> { [2:43]
    |       |--EXPR -> EXPR [3:26]
    |       |   `--METHOD_CALL -> ( [3:26]
    |       |       |--DOT -> . [3:18]
    |       |       |   |--DOT -> . [3:14]
    |       |       |   |   |--IDENT -> System [3:8]
    |       |       |   |   `--IDENT -> out [3:15]
    |       |       |   `--IDENT -> println [3:19]
    |       |       |--ELIST -> ELIST [3:27]
    |       |       |   `--EXPR -> EXPR [3:27]
    |       |       |       `--STRING_LITERAL -> "Hello World!" [3:27]
    |       |       `--RPAREN -> ) [3:41]
    |       |--SEMI -> ; [3:42]
    |       `--RCURLY -> } [4:4]
    `--RCURLY -> } [5:0]
Enter fullscreen mode Exit fullscreen mode

How to Make an AST:

  1. Run the Source Code in your local Environment.

  2. Download the Checkstyle Command line: checkstyle-8.43-all.jar from Here.

  3. Audit the Program with the help of Checkstyle in your Terminal: java -jar checkstyle-8.43-all.jar -c /google_checks.xml YourFile.java

  4. After Audit, Run this command in your terminal to get the AST of your preferred Code: java -jar checkstyle-8.43-all.jar -t YourFile.java

  5. Your AST is Ready.



To learn More about AST and Checkstyle: Click Here

Image of Timescale

🚀 pgai Vectorizer: SQLAlchemy and LiteLLM Make Vector Search Simple

We built pgai Vectorizer to simplify embedding management for AI applications—without needing a separate database or complex infrastructure. Since launch, developers have created over 3,000 vectorizers on Timescale Cloud, with many more self-hosted.

Read full post →

Top comments (0)