What will be scraped
Full code
If you don't need an explanation, have a look at the full code example in the online IDE
cconst puppeteer = require("puppeteer-extra");
const StealthPlugin = require("puppeteer-extra-plugin-stealth");
puppeteer.use(StealthPlugin());
const searchParams = {
id: "16230039729797264158", // Parameter defines the ID of a product you want to get the results for
hl: "en", // Parameter defines the language to use for the Google search
gl: "us", // parameter defines the country to use for the Google search
};
const URL = `https://www.google.com/shopping/product/${searchParams.id}/offers?hl=${searchParams.hl}&gl=${searchParams.gl}`;
async function getSellersInfo(page) {
return await page.evaluate(() => {
return {
productResults: {
title: document.querySelector(".BvQan")?.textContent.trim(),
reviews: parseInt(document.querySelector(".HiT7Id > span")?.getAttribute("aria-label").replace(",", "")),
rating: parseFloat(document.querySelector(".UzThIf")?.getAttribute("aria-label")),
},
nearbySellers: Array.from(document.querySelectorAll(".sh-osd__offer-row")).map((el) => ({
name: el.querySelector(".b5ycib")?.textContent.trim() || el.querySelector(".kjM2Bf")?.textContent.trim(),
link: `https://www.google.com${el.querySelector(".b5ycib")?.getAttribute("href") || el.querySelector(".pCKrrc > a")?.getAttribute("href")}`,
basePrice: el.querySelector(".g9WBQb")?.textContent.trim(),
additionalPrice: {
shipping: el.querySelector(".SuutWb tr:nth-child(2) td:last-child")?.textContent.trim(),
tax: el.querySelector(".SuutWb tr:nth-child(3) td:last-child")?.textContent.trim(),
},
totalPrice: el.querySelector(".SuutWb tr:last-child td:last-child")?.textContent.trim(),
condition: el.querySelector(".Yy9sbf")?.textContent.trim() || "New",
})),
};
});
}
async function getNearbySellers() {
const browser = await puppeteer.launch({
headless: true, // if you want to see what the browser is doing, you need to change this option to "false"
args: ["--no-sandbox", "--disable-setuid-sandbox"],
});
const page = await browser.newPage();
await page.setDefaultNavigationTimeout(60000);
await page.goto(URL);
await page.waitForSelector("#sh-oo__filters-wrapper");
await page.click("#sh-oo__filters-wrapper > div:first-child a");
await page.waitForTimeout(5000);
const sellers = { productId: searchParams.id, ...(await getSellersInfo(page)) };
await browser.close();
return sellers;
}
getNearbySellers().then((result) => console.dir(result, { depth: null }));
Preparation
First, we need to create a Node.js* project and add npm
packages puppeteer
, puppeteer-extra
and puppeteer-extra-plugin-stealth
to control Chromium (or Chrome, or Firefox, but now we work only with Chromium which is used by default) over the DevTools Protocol in headless or non-headless mode.
To do this, in the directory with our project, open the command line and enter:
$ npm init -y
And then:
$ npm i puppeteer puppeteer-extra puppeteer-extra-plugin-stealth
*If you don't have Node.js installed, you can download it from nodejs.org and follow the installation documentation.
πNote: also, you can use puppeteer
without any extensions, but I strongly recommended use it with puppeteer-extra
with puppeteer-extra-plugin-stealth
to prevent website detection that you are using headless Chromium or that you are using web driver. You can check it on Chrome headless tests website. The screenshot below shows you a difference.
Process
We need to extract data from HTML elements. The process of getting the right CSS selectors is fairly easy via SelectorGadget Chrome extension which able us to grab CSS selectors by clicking on the desired element in the browser. However, it is not always working perfectly, especially when the website is heavily used by JavaScript.
We have a dedicated Web Scraping with CSS Selectors blog post at SerpApi if you want to know a little bit more about them.
The Gif below illustrates the approach of selecting different parts of the results using SelectorGadget.
Code explanation
Declare puppeteer
to control Chromium browser from puppeteer-extra
library and StealthPlugin
to prevent website detection that you are using web driver from puppeteer-extra-plugin-stealth
library:
const puppeteer = require("puppeteer-extra");
const StealthPlugin = require("puppeteer-extra-plugin-stealth");
Next, we "say" to puppeteer
use StealthPlugin
, write the necessary request parameters and search URL:
puppeteer.use(StealthPlugin());
const searchParams = {
id: "16230039729797264158", // Parameter defines the ID of a product you want to get the results for
hl: "en", // Parameter defines the language to use for the Google search
gl: "us", // parameter defines the country to use for the Google search
};
const URL =
`https://www.google.com/shopping/product/${searchParams.id}/offers?hl=${searchParams.hl}&gl=${searchParams.gl}`;
Next, we write a function to get product info from the page:
async function getSellersInfo(page) {
...
}
In this function we get information from the page context (using evaluate()
method) and save it in the returned object:
return await page.evaluate(() => ({
...
}));
Next, we need to get the different parts of the page using next methods:
-
querySelectorAll()
; -
querySelector()
; -
getAttribute()
; -
textContent
; -
trim()
; -
Array.from()
; -
replace()
; -
parseInt()
; -
parseFloat()
.
productResults: {
title: document.querySelector(".BvQan")?.textContent.trim(),
reviews:
parseInt(
document.querySelector(".HiT7Id > span")
?.getAttribute("aria-label")
.replace(",", "")
),
rating:
parseFloat(document.querySelector(".UzThIf")?.getAttribute("aria-label")),
},
nearbySellers: Array.from(document.querySelectorAll(".sh-osd__offer-row")).map((el) => ({
name:
el.querySelector(".b5ycib")?.textContent.trim() ||
el.querySelector(".kjM2Bf")?.textContent.trim(),
link:
`https://www.google.com${el.querySelector(".b5ycib")?.getAttribute("href") ||
el.querySelector(".pCKrrc > a")?.getAttribute("href")}`,
basePrice: el.querySelector(".g9WBQb")?.textContent.trim(),
additionalPrice: {
shipping:
el.querySelector(".SuutWb tr:nth-child(2) td:last-child")?.textContent.trim(),
tax: el.querySelector(".SuutWb tr:nth-child(3) td:last-child")?.textContent.trim(),
},
totalPrice: el.querySelector(".SuutWb tr:last-child td:last-child")?.textContent.trim(),
condition: el.querySelector(".Yy9sbf")?.textContent.trim() || "New",
})),
Next, write a function to control the browser, and get information:
async function getNearbySellers() {
...
}
In this function first we need to define browser
using puppeteer.launch({options})
method with current options
, such as headless: true
and args: ["--no-sandbox", "--disable-setuid-sandbox"]
.
These options mean that we use headless mode and array with arguments which we use to allow the launch of the browser process in the online IDE. And then we open a new page
:
const browser = await puppeteer.launch({
// if you want to see what the browser is doing, you need to change this option to "false"
headless: true,
args: ["--no-sandbox", "--disable-setuid-sandbox"],
});
const page = await browser.newPage();
Next, we change default (30 sec) time for waiting for selectors to 60000 ms (1 min) for slow internet connection with .setDefaultNavigationTimeout()
method, go to URL
with .goto()
method and use .waitForSelector()
method to wait until the selector is load:
await page.setDefaultNavigationTimeout(60000);
await page.goto(URL);
await page.waitForSelector("#sh-oo__filters-wrapper");
And finally, we save sellers data from the page in the sellers
constant (using spread syntax
), close the browser, and return the received data:
const sellers = {
productId: searchParams.id,
...(await getSellersInfo(page))
};
await browser.close();
return sellers;
Now we can launch our parser:
$ node YOUR_FILE_NAME # YOUR_FILE_NAME is the name of your .js file
Output
{
"productId": "16230039729797264158",
"productResults": {
"title": "Sony PlayStation 5 - Standard",
"reviews": 63413,
"rating": 4.5
},
"nearbySellers": [
{
"name":"Gamestop",
"link":"https://www.google.com/url?q=https://www.gamestop.com/consoles-hardware/playstation-5/consoles/products/sony-playstation-5-console/225169.html%3Futm_source%3Dgoogle%26utm_medium%3Dfeeds%26utm_campaign%3Dunpaid_listings%26a%3D1&sa=U&ved=0ahUKEwiA6-mqkqT7AhXlFlkFHSmeDQ0Q2ykIJA&usg=AOvVaw3RHvMEi5wupRSbkZ3jmicw",
"basePrice":"$499.99",
"additionalPrice":{
"shipping":"See website"
},
"totalPrice":"$499.99"
},
...and other sellers
]
}
Using Google Product Local Sellers API from SerpApi
This section is to show the comparison between the DIY solution and our solution.
The biggest difference is that you don't need to create the parser from scratch and maintain it.
There's also a chance that the request might be blocked at some point from Google, we handle it on our backend so there's no need to figure out how to do it yourself or figure out which CAPTCHA, proxy provider to use.
First, we need to install google-search-results-nodejs
:
npm i google-search-results-nodejs
Here's the full code example, if you don't need an explanation:
const SerpApi = require("google-search-results-nodejs");
const search = new SerpApi.GoogleSearch(process.env.API_KEY); //your API key from serpapi.com
const params = {
product_id: "16230039729797264158", // Parameter defines the ID of a product you want to get the results for.
engine: "google_product", // search engine
device: "desktop", //Parameter defines the device to use to get the results. It can be set to "desktop" (default), "tablet", or "mobile"
hl: "en", // parameter defines the language to use for the Google search
gl: "us", // parameter defines the country to use for the Google search
offers: true, // parameter for fetching offers results
filter: "flocal:1", // parameter for fetching nearby sellers
};
const getJson = () => {
return new Promise((resolve) => {
search.json(params, resolve);
});
};
const getResults = async () => {
const json = await getJson();
return { ...json.product_results, nearbySellers: json.sellers_results?.online_sellers };
};
getResults().then((result) => console.dir(result, { depth: null }));
Code explanation
First, we need to declare SerpApi
from google-search-results-nodejs
library and define new search
instance with your API key from SerpApi:
const SerpApi = require("google-search-results-nodejs");
const search = new SerpApi.GoogleSearch(API_KEY);
Next, we write the necessary parameters for making a request:
const params = {
product_id: "16230039729797264158", // Parameter defines the ID of a product you want to get the results for.
engine: "google_product", // search engine
device: "desktop", //Parameter defines the device to use to get the results. It can be set to "desktop" (default), "tablet", or "mobile"
hl: "en", // parameter defines the language to use for the Google search
gl: "us", // parameter defines the country to use for the Google search
offers: true, // parameter for fetching offers results
filter: "flocal:1", // parameter for fetching nearby sellers
};
Next, we wrap the search method from the SerpApi library in a promise to further work with the search results:
const getJson = () => {
return new Promise((resolve) => {
search.json(params, resolve);
});
};
And finally, we declare the function getResult
that gets data from the page and return it:
const getResults = async () => {
...
};
In this function we get json
with results, and return object with data from received json
using spread syntax
:
const json = await getJson();
return {
...json.product_results,
nearbySellers: json.sellers_results?.online_sellers
};
After, we run the getResults
function and print all the received information in the console with the console.dir
method, which allows you to use an object with the necessary parameters to change default output options:
getResults().then((result) => console.dir(result, { depth: null }));
Output
{
"product_id":16230039729797263000,
"title":"Sony PlayStation 5 - Standard",
"reviews":63413,
"rating":4.5,
"nearbySellers":[
{
"position":1,
"name":"Gamestop",
"link":"https://www.google.com/url?q=https://www.gamestop.com/consoles-hardware/playstation-5/consoles/products/sony-playstation-5-console/225169.html%3Futm_source%3Dgoogle%26utm_medium%3Dfeeds%26utm_campaign%3Dunpaid_listings%26a%3D1&sa=U&ved=0ahUKEwiA6-mqkqT7AhXlFlkFHSmeDQ0Q2ykIJA&usg=AOvVaw3RHvMEi5wupRSbkZ3jmicw",
"base_price":"$499.99",
"additional_price":{
"shipping":"See website"
},
"total_price":"$499.99"
},
...and other sellers
]
}
Links
If you want to see some projects made with SerpApi, write me a message.
Add a Feature Requestπ« or a Bugπ
Top comments (0)